6533b7d3fe1ef96bd12613d8
RESEARCH PRODUCT
Development of Point-to-Point Path Control in Actuator Space for Hydraulic Knuckle Boom Crane
Konrad Johan JensenMichael Rygaard HansenMorten Kjeld Ebbesensubject
Control valves0209 industrial biotechnologyControl and OptimizationComputer scienceactuator spacehydraulicspath control02 engineering and technologylaw.inventionSetpointComputer Science::Robotics020901 industrial engineering & automation020401 chemical engineeringControl theorylawLinearizationlcsh:TK1001-1841lcsh:TA401-492Cartesian coordinate systemPoint (geometry)knuckle boom craneFeedback linearization0204 chemical engineeringlcsh:Production of electric energy or power. Powerplants. Central stationsVDP::Teknologi: 500Control and Systems EngineeringPath (graph theory)lcsh:Materials of engineering and construction. Mechanics of materialsActuatordescription
This paper presents a novel method for point-to-point path control for a hydraulic knuckle boom crane. The developed path control algorithm differs from previous solutions by operating in the actuator space instead of the joint space or Cartesian space of the crane. By operating in actuator space, almost all the parameters and constraints of the system become either linear or constant, which greatly reduces the complexity of both the control algorithm and path generator. For a given starting point and endpoint, the motion for each actuator is minimized compared to other methods. This ensures that any change in direction of motion is avoided, thereby greatly minimizing fatigue, jerky motion, and energy consumption. However, where other methods may move the tool-point in a straight line from start to end, the method in actuator space will not. In addition, when working in actuator space in combination with pressure-compensated control valves, there is no need for linearization of the system or feedback linearization due to the linear relationship between the control signal and the actuator velocities. The proposed solution has been tested on a physical system and shows good setpoint tracking and minimal oscillations.
year | journal | country | edition | language |
---|---|---|---|---|
2020-04-01 |