6533b7d3fe1ef96bd12614af
RESEARCH PRODUCT
Hyperspectral imaging reveals spectral differences and can distinguish malignant melanoma from pigmented basal cell carcinomas : A pilot study
Ilkka PölönenNoora NeittaanmäkiMari GrönroosMari SalmivuoriJ.e. Räsänensubject
Pathologymedicine.medical_specialtySkin Neoplasms010504 meteorology & atmospheric sciencesneural network3122 Cancers0211 other engineering and technologiesmalignant melanomaPilot Projects02 engineering and technologyneuroverkotDermatologytyvisolusyöpä3121 Internal medicine01 natural sciencesSensitivity and SpecificityLesionihosyöpäDiagnosis Differentialbasal cell carcinomamedicineHumansBasal cell carcinomaBasal cellProspective StudiesMelanoma021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryMelanomaspektrikuvausHyperspectral imagingdeep learningGeneral MedicineHyperspectral Imagingdiagnostiikkamedicine.disease3126 Surgery anesthesiology intensive care radiologyReflectivityConfidence interval3. Good healthkoneoppiminenCarcinoma Basal CellRL1-8033121 General medicine internal medicine and other clinical medicinemedicine.symptomDifferential diagnosisbusinessdescription
Pigmented basal cell carcinomas can be difficult to distinguish from melanocytic tumours. Hyperspectral imaging is a non-invasive imaging technique that measures the reflectance spectra of skin in vivo. The aim of this prospective pilot study was to use a convolutional neural network classifier in hyperspectral images for differential diagnosis between pigmented basal cell carcinomas and melanoma. A total of 26 pigmented lesions (10 pigmented basal cell carcinomas, 12 melanomas in situ, 4 invasive melanomas) were imaged with hyperspectral imaging and excised for histopathological diagnosis. For 2-class classifier (melanocytic tumours vs pigmented basal cell carcinomas) using the majority of the pixels to predict the class of the whole lesion, the results showed a sensitivity of 100% (95% confidence interval 81-100%), specificity of 90% (95% confidence interval 60-98%) and positive predictive value of 94% (95% confidence interval 73-99%). These results indicate that a convolutional neural network classifier can differentiate melanocytic tumours from pigmented basal cell carcinomas in hyperspectral images. Further studies are warranted in order to confirm these preliminary results, using larger samples and multiple tumour types, including all types of melanocytic lesions. publishedVersion Peer reviewed
year | journal | country | edition | language |
---|---|---|---|---|
2021-02-01 |