6533b7d3fe1ef96bd1261523
RESEARCH PRODUCT
Genetic and Environmental Controls on Nitrous Oxide Accumulation in Lakes
Hannu NykänenAntti J. RissanenMoritz F. LehmannJatta SaarenheimoLauri ArvolaMarja Tiirolasubject
Nitrite ReductasesDenitrificationEND-PRODUCTNitrous Oxidelcsh:MedicineDenitrifying bacteriachemistry.chemical_compoundWater columnBacterial ProteinsNitrateEcosystemNitritelcsh:ScienceEcosystemta1191172 Environmental sciencesMultidisciplinaryBacteriaChemistryEcologyMICROBIAL COMMUNITYlcsh:RN2OLake ecosystemta1182NATURAL WATERSGene Expression Regulation BacterialDENITRIFICATIONequipment and suppliesSOILSLakesDENITRIFYING BACTERIA13. Climate actionEnvironmental chemistrylcsh:QSeasonsHypolimnionOxidoreductasesWater MicrobiologyRIBOSOMAL-RNAnitrous oxide (N2O) accumulationResearch ArticleNOSZ GENESNITRATEdescription
We studied potential links between environmental factors, nitrous oxide (N2O) accumulation, and genetic indicators of nitrite and N2O reducing bacteria in 12 boreal lakes. Denitrifying bacteria were investigated by quantifying genes encoding nitrite and N2O reductases (nirS/nirK and nosZ, respectively, including the two phylogenetically distinct clades nosZ(I) and nosZ(II)) in lake sediments. Summertime N2O accumulation and hypolimnetic nitrate concentrations were positively correlated both at the inter-lake scale and within a depth transect of an individual lake (Lake Vanajavesi). The variability in the individual nirS, nirK, nosZ(I), and nosZ(II) gene abundances was high (up to tenfold) among the lakes, which allowed us to study the expected links between the ecosystem's nir-vs-nos gene inventories and N2O accumulation. Inter-lake variation in N2O accumulation was indeed connected to the relative abundance of nitrite versus N2O reductase genes, i.e. the (nirS+nirK)/nosZ(I) gene ratio. In addition, the ratios of (nirS+ nirK)/nosZ(I) at the inter-lake scale and (nirS+ nirK)/nosZ(I+II) within Lake Vanajavesi correlated positively with nitrate availability. The results suggest that ambient nitrate concentration can be an important modulator of the N2O accumulation in lake ecosystems, either directly by increasing the overall rate of denitrification or indirectly by controlling the balance of nitrite versus N2O reductase carrying organisms. Peer reviewed
year | journal | country | edition | language |
---|---|---|---|---|
2015-03-01 |