6533b7d3fe1ef96bd12615d0
RESEARCH PRODUCT
Minimizers for the Thin One‐Phase Free Boundary Problem
Yannick SireGeorgios SakellarisAapo KauranenMartí PratsMax Engelsteinsubject
Pure mathematicsApplied MathematicsGeneral MathematicsDimension (graph theory)Content (measure theory)Free boundary problemBoundary (topology)Almost everywhereDirichlet's energyFunction (mathematics)Measure (mathematics)Mathematicsdescription
We consider the “thin one-phase" free boundary problem, associated to minimizing a weighted Dirichlet energy of the function in urn:x-wiley:00103640:media:cpa22011:cpa22011-math-0001 plus the area of the positivity set of that function in urn:x-wiley:00103640:media:cpa22011:cpa22011-math-0002. We establish full regularity of the free boundary for dimensions urn:x-wiley:00103640:media:cpa22011:cpa22011-math-0003, prove almost everywhere regularity of the free boundary in arbitrary dimension, and provide content and structure estimates on the singular set of the free boundary when it exists. All of these results hold for the full range of the relevant weight. While our results are typical for the calculus of variations, our approach does not follow the standard one first introduced by Alt and Caffarelli in 1981. Instead, the nonlocal nature of the distributional measure associated to a minimizer necessitates arguments that are less reliant on the underlying PDE. © 2021 Wiley Periodicals LLC. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2021-07-16 | Communications on Pure and Applied Mathematics |