6533b7d4fe1ef96bd1261ee9

RESEARCH PRODUCT

Probing the chiral weak Hamiltonian at finite volumes

Mikko LainePilar Hernández

subject

QuarkPhysicsQuantum chromodynamicsNuclear and High Energy PhysicsChiral perturbation theoryHigh Energy Physics - Lattice (hep-lat)FlavourHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaObservableweak decaysPseudoscalarsymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Latticelattice QCDkaon physicssymbolschiral lagrangiansHamiltonian (quantum mechanics)Mathematical physics

description

Non-leptonic kaon decays are often described through an effective chiral weak Hamiltonian, whose couplings ("low-energy constants") encode all non-perturbative QCD physics. It has recently been suggested that these low-energy constants could be determined at finite volumes by matching the non-perturbatively measured three-point correlation functions between the weak Hamiltonian and two left-handed flavour currents, to analytic predictions following from chiral perturbation theory. Here we complete the analytic side in two respects: by inspecting how small ("epsilon-regime") and intermediate or large ("p-regime") quark masses connect to each other, and by including in the discussion the two leading Delta I = 1/2 operators. We show that the epsilon-regime offers a straightforward strategy for disentangling the coefficients of the Delta I = 1/2 operators, and that in the p-regime finite-volume effects are significant in these observables once the pseudoscalar mass M and the box length L are in the regime ML \lsim 5.0.

10.1088/1126-6708/2006/10/069https://pub.uni-bielefeld.de/record/1596677