6533b7d4fe1ef96bd1262029

RESEARCH PRODUCT

In vitro and in silico studies of polycondensed diazine systems as anti-parasitic agents

Antonino LauriaAnnalisa GuarcelloAnna Maria AlmericoMarco Tutone

subject

Models MolecularTrypanosoma cruziIn silicoPlasmodium falciparumTrypanosoma brucei bruceiClinical BiochemistryPharmaceutical ScienceTrypanosoma bruceiBiochemistryStructure-Activity Relationshipchemistry.chemical_compoundParasitic Sensitivity Testsparasitic diseasesDrug DiscoveryLeishmania infantumTrypanosoma cruziMolecular BiologyDiazineAntiparasitic AgentsDose-Response Relationship DrugMolecular StructurebiologyOrganic ChemistryPlasmodium falciparumAnti-parasitic Plasmodium Leishmania Trypanosoma Diazine Induced fit docking/MM-GBSAbiology.organism_classificationSettore CHIM/08 - Chimica FarmaceuticaHydrazineschemistryBiochemistryDocking (molecular)TrypanosomaMolecular MedicineLeishmania infantum

description

Abstract Parasitic diseases caused by protozoarian agents are still relevant today more than ever. Recently, we synthesized several polycondensed diazine derivatives by means 1,3-dipolar cycloaddition reactions. A broad selection of these compounds were submitted to in vitro biological screening against Plasmodium falciparum , Leishmania infantum , Trypanosoma brucei , and Trypanosoma cruzi , resulting active at micromolar level. Induced Fit Docking/MM-GBSA studies were performed giving interesting indications about the probable mechanism of action of the most active compounds

https://doi.org/10.1016/j.bmcl.2011.12.004