6533b7d4fe1ef96bd126270b
RESEARCH PRODUCT
Study of dynamics ofD0→K−e+νeandD0→π−e+νedecays
J. B. JiaoY. H. GuanM. QiKai LiuH. J. YangY. F. WangX. L. JiD. J. AmbroseS. SchumannY. NefedovF. LiC. LengW. G. LiX. Y. MaXiaocong AiW. X. GongZ. J. XiaoTalib HussainSerkant Ali CetinYao WangS. QianJialun PingK. ZhangX. Y. ZhangX. LiuF. C. MaM. LaraJ. B. LiuY. J. SunY. P. LuM. MaggioraLing ZhaoP. LarinL. ZottiC. HuX. TangX. M. LiS. SpataroX. P. XuM. AlbrechtLei ZhaoZ. L. HouYang YangD. Y. WangJ. Q. ZhangS. B. LiuLei LiW. D. LiJ. F. SunL. L. JiangH. L. MaH. B. LiJ. F. QiuG. LiH. M. LiuL. FavaS. L. NiuY. B. ZhaoQ. L. XiuC. Z. YuanO. B. KolcuF. NerlingX. FangJ. MinF. Y. LiX. Q. LiM. GrecoK. J. ZhuD. M. LiSai-juan ChenS. X. DuCui LiK. MoriyaW. ShanJ. DongY. Q. WangC. D. FuC. Q. FengX. R. ChenZ. Y. DengFeng LiuM. PelizaeusS. NisarC. J. TangZ. T. SunB. KopfS. MarcelloY. HuG. F. CaoK. L. HeK. Y. LiuA. G. DenigZ. B. LiC. L. LuoY. ZengY. X. YangH. J. LuJ. G. LuXiangdong RuanZ. A. LiuC. C. ZhangB. ZhongL. B. GuoXingguo LiY. P. LuY. H. ZhengCong-feng QiaoO. AlbayrakQ. OuyangF. A. HarrisTord JohanssonGuangshun HuangM. Z. WangOrhan CakirYunlong ZhangM. H. YeS. S. FangV. PrasadI. TapanP. L. WangP. KieseB. WangShan WangXiao-rui LyuQ. LiuD. BettoniD. XiaoY. H. YanS. L. OlsenJimin ZhaoK. GoetzenRoy A. BriereW. KuehnY. B. ChenXiaofeng ZhuJ. Z. ZhangA. HafnerF. E. MaasY. BanT. HuP. WeidenkaffX. Y. JiangJ. W. ZhaoQ. ZhaoY. B. LiuY. Z. SunJ. L. ZhangN. Yu. MuchnoiR. PolingR. KliemtS. P. WenX. N. MaZhiqing LiuY. T. LiangXiang ZhouM. BertaniP. R. LiX. S. KangH. MuramatsuY. C. ZhuUlrich WiednerA. Q. GuoW. M. SongA. ZalloG. S. VarnerX. S. JiangH. H. ZhangG. A. ChelkovZ. HaddadiL. YangP. L. WangJ. F. ChangJianping ZhengS. ZhuX. S. QinX. R. ZhouL. D. LiuCheng LiL. Y. DongJie YuY. H. ZhangM. FritschX. L. LuoT. MaH. XiaoE. BogerGang ZhaoY. J. MaoT. HeldM. KavatsyukY. GaoGuangming HuangP. X. ShenJ. Y. LiuG. X. SunJ. V. BennettLi YanKrisztian PetersJ. C. LiJ. J. ZhangZ. WuW. P. WangM. DestefanisF. BianchiL. L. MaW. GradlM. RipkaL. W. JiangX. CaiZ. H. QinZ. Y. WangW. J. ZhengZ. JiaoFu-hu LiuK. J. ZhuB. X. ZhangD. H. ZhangM. H. GuA. YuncuH. Y. ShengJ. ZhuangX. Q. HaoZhiqing ZhangM. X. LuoQ. GaoC. DongJian WeiS. SosioY. ZhangYucheng HuangChuan LiuY. P. GuoH. X. YangI. GarziaD. V. DedovichE. H. ThorndikeZ. P. ZhangQ. AnZ. NingYuehong XieG. R. LiaoJ. F. HuG. CibinettoJ. Z. FanC. X. YuD. W. BennettZujian WangJoachim PetterssonL. G. XiaA. AmorosoL. Q. QinG. F. XuF. FeldbauerHuihui LiuJ. P. LiuB. ZhengR. G. PingS. JinJ. Z. BaiJ. G. MesschendorpJ. P. DaiA. CalcaterraZ. G. ZhaoX. C. ChenChi ZhangBrent J. LiuX. K. ChuY. GuoA. DbeyssiZ. J. SunH. LoehnerX. Y. SongM. KornicerX. B. JiPeilian LiuA. JulinF. De MoriX. Y. ZhouX. F. WangP. PatteriQ. M. MaB. KlossX. Y. NiuY. YuanY. S. ZhuLili ZhangJ. S. HuangX. H. MoL. S. WangN. Kalantar-nayestanakiM. H. YeC. X. LiuL. L. WangH. CaiI. B. NikolaevY. J. MoH. S. ChenT. WeberJ. H. YinK. H. RashidM. ShaoY. T. GuQ. P. JiLiqing XuX. Y. ShenV. SantoroY. DingE. FioravantiZ. A. ZhuX. L. KangA. SarantsevD. H. WeiJ. S. LangeQ. W. ZhaoC. P. ShenJin LiM. G. ZhaoAndrzej KupscW. L. YuanY. N. ZhangY. X. XiaS. H. ZhuZ. G. WangM. L. ChenH. Y. ZhangG. F. ChenJ. Y. ZhangJie ZhaoD. X. LinY. K. HengAlexey ZhemchugovH. M. HuJ. M. BianZhenyu ZhangS. J. ZhaoE. E. ErenJ. C. ChenXuanhong LouJ. W. ZhangC. Morales MoralesI. UmanM. UllrichZ. H. WangYaquan FangC. F. RedmerK. SchoenningB. S. ZouW. C. YanX. Q. HeX. T. HuangM. AblikimYu ZhangA. A. ZafarG. RongL. P. ZhouZ. P. MaoH. P. ChengJ. FangTao LiZ. GaoS. HanCh. RosnerH. LiangQ. P. JiL. H. WuM. SavrieMagnus WolkeY. F. LiangX. Y. GaoD. P. JinDayong WangN. QinM. Y. DongM. TiemensH. B. LiuJ. H. ZouS. S. SunJ. H. LiuKe WangR. E. MitchellBibo KeW. B. YanP. F. DuanFenfen AnM. N. AchasovGiulietto FeliciS. PacettiT. C. ZhaoR. Baldini FerroliKe LiQ. J. XuX. K. ZhouFang LiuX. N. LiI. DenysenkoHaiping PengTao LuoB. Y. ZhangB. X. YuH. S. ChenH. L. DaiIgor Boykosubject
Semileptonic decayPhysicsNuclear and High Energy PhysicsQCD sum rulesParticle physics010308 nuclear & particles physicsCabibbo–Kobayashi–Maskawa matrixElectron–positron annihilationHadronAnalytical chemistryLattice QCD01 natural sciencesLight cone0103 physical sciencesSum rule in quantum mechanics010306 general physicsdescription
In an analysis of a 2.92 fb(-1) data sample taken at 3.773 GeV with the BESIII detector operated at the BEPCII collider, we measure the absolute decay branching fractions B(D-0 -> K(-)e(+)nu(e)) = (3.505 +/- 0.014 +/- 0.033)% and B(D-0 -> pi(-)e(+)nu(e)) = (0.295 +/- 0.004 +/- 0.003)%. From a study of the differential decay rates we obtain the products of hadronic form factor and the magnitude of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element f(+)(K)(0)vertical bar V-cs vertical bar = 0.7172 +/- 0.0025 +/- 0.0035 and f(+)(pi)(0)vertical bar V-cd vertical bar = 0.1435 +/- 0.0018 +/- 0.0009. Combining these products with the values of vertical bar V-cs(d)vertical bar from the SM constraint fit, we extract the hadronic form factors f(+)(K)(0) = 0.7368 +/- 0.0026 +/- 0.0036 and f(+)(pi)(0) = 0.6372 +/- 0.0080 +/- 0.0044, and their ratio f(+)(pi)(0)/f(+)(K)(0) = 0.8649 +/- 0.0112 +/- 0.0073. These form factors and their ratio are used to test unquenched lattice QCD calculations of the form factors and a light cone sum rule (LCSR) calculation of their ratio. The measured value of f(+)(K(pi))(0)vertical bar V-cs(d)vertical bar and the lattice QCD value for f(+)(K(pi))(0) are used to extract values of the CKM matrix elements of vertical bar V-cs vertical bar = 0.9601 +/- 0.0033 +/- 0.0047 +/- 0.0239 and vertical bar V-cd vertical bar = 0.2155 +/- 0.0027 +/- 0.0014 +/- 0.0094, where the third errors are due to the uncertainties in lattice QCD calculations of the form factors. Using the LCSR value for f(+)(pi)(0)/f(+)(K)(0), we determine the ratio vertical bar V-cd vertical bar/vertical bar V-cs vertical bar = 0.238 +/- 0.004 +/- 0.002 +/- 0.011, where the third error is from the uncertainty in the LCSR normalization. In addition, we measure form factor parameters for three different theoretical models that describe the weak hadronic charged currents for these two semileptonic decays. All of these measurements are the most precise to date.
year | journal | country | edition | language |
---|---|---|---|---|
2015-10-22 | Physical Review D |