6533b7d4fe1ef96bd12627ba
RESEARCH PRODUCT
Study of the cytolethal distending toxin (CDT)-activated cell cycle checkpoint. Involvement of the CHK2 kinase.
Véronique BaldinFrédéric AlbyRaoul MazarsBernard DucommunJean-marie DarbonEmmanuelle GuillouJean De Ryckesubject
Intracellular FluidCell cycle checkpointCytolethal distending toxinCell Cycle ProteinsAtaxia Telangiectasia Mutated ProteinsBiochemistryS PhaseWortmanninchemistry.chemical_compoundStructural BiologyPhosphorylation0303 health sciences030302 biochemistry & molecular biologyCell CycleCell cycleProtein-Tyrosine Kinases3. Good healthCell biologyDNA-Binding Proteinsbiological phenomena cell phenomena and immunityWortmanninG2 PhaseCytolethal distending toxinBacterial ToxinsProto-Oncogene Proteins pp60(c-src)Biophysics[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyProtein Serine-Threonine KinasesCell Line03 medical and health sciencesCaffeineGeneticsHumanscdc25 PhosphatasesCHEK1Molecular Biology[SDV.BC] Life Sciences [q-bio]/Cellular Biology030304 developmental biologyCheckpoint 2 kinaseCyclin-dependent kinase 1Cell growthTumor Suppressor ProteinsCell BiologyG2-M DNA damage checkpointCDC25CAndrostadienesGenes cdcchemistryCancer researchHeLa Cellsdescription
AbstractThe bacterial cytolethal distending toxin (CDT) triggers a G2/M cell cycle arrest in eukaryotic cells by inhibiting the CDC25C phosphatase-dependent CDK1 dephosphorylation and activation. We report that upon CDT treatment CDC25C is fully sequestered in the cytoplasmic compartment, an effect that is reminiscent of DNA damage-dependent checkpoint activation. We show that the checkpoint kinase CHK2, an upstream regulator of CDC25C, is phosphorylated and activated after CDT treatment. In contrast to what is observed with other DNA damaging agents, we demonstrate that the activation of CHK2 can only take place during S-phase. Use of wortmannin and caffeine suggests that this effect is not dependent on ATM but rather on another as yet unidentified PI3 kinase family member. These results confirm that the CDT is therefore responsible for specific genomic injuries that block cell proliferation by activating a cell cycle checkpoint.
year | journal | country | edition | language |
---|---|---|---|---|
2001-01-01 | FEBS letters |