6533b7d4fe1ef96bd1262a20

RESEARCH PRODUCT

Fractional visco-elastic Euler–Bernoulli beam

Antonina PirrottaM. Di PaolaRudolf Heuer

subject

Constitutive equationVirtual work principleCurvatureFractional calculuViscoelasticityQuasi-static problemsVisco-elastic beamMaterials Science(all)Euler-Bernoulli beamModelling and SimulationGeneral Materials ScienceVirtual workBoundary value problemMathematicsApplied MathematicsMechanical EngineeringMathematical analysisFractional calculusCondensed Matter PhysicsFractional calculusClassical mechanicsMechanics of MaterialsQuasi-static problemModeling and SimulationEuler–Bernoulli beamBending momentCylinder stressSettore ICAR/08 - Scienza Delle Costruzioni

description

Abstract Aim of this paper is the response evaluation of fractional visco-elastic Euler–Bernoulli beam under quasi-static and dynamic loads. Starting from the local fractional visco-elastic relationship between axial stress and axial strain, it is shown that bending moment, curvature, shear, and the gradient of curvature involve fractional operators. Solution of particular example problems are studied in detail providing a correct position of mechanical boundary conditions. Moreover, it is shown that, for homogeneous beam both correspondence principles also hold in the case of Euler–Bernoulli beam with fractional constitutive law. Virtual work principle is also derived and applied to some case studies.

10.1016/j.ijsolstr.2013.06.010http://dx.doi.org/10.1016/j.ijsolstr.2013.06.010