6533b7d5fe1ef96bd1263c0e
RESEARCH PRODUCT
Connectionist models of face processing: A survey
Dominique ValentinAlice J. O'tooleGarrison W. CottrellHervé AbdiHervé Abdisubject
Artificial neural networkbusiness.industryComputer scienceFeature selectionMachine learningcomputer.software_genreFacial recognition systemBackpropagationCategorizationConnectionismArtificial IntelligenceFace (geometry)Signal ProcessingPattern recognition (psychology)Computer Vision and Pattern RecognitionArtificial intelligencebusinesscomputerSoftwaredescription
Abstract Connectionist models of face recognition, identification, and categorization have appeared recently in several disciplines, including psychology, computer science, and engineering. We present a review of these models with the goal of complementing a recent survey by Samal and Iyengar [Pattern Recognition25, 65–77 (1992)] of nonconnectionist approaches to the problem of the automatic face recognition. We concentrate on models that use linear autoassociative networks, nonlinear autoassociative (or compression) and/or heteroassociative backpropagation networks. One advantage of these models over some nonconnectionist approaches is that analyzable features emerge naturally from image-based codes, and hence the problem of feature selection and segmentation from faces can be avoided.
year | journal | country | edition | language |
---|---|---|---|---|
1994-09-01 | Pattern Recognition |