6533b7d5fe1ef96bd126480b

RESEARCH PRODUCT

Privacy Violation Classification of Snort Ruleset

Nils Ulltveit-moeVladimir A. Oleshchuk

subject

VDP::Mathematics and natural science: 400::Information and communication science: 420::Security and vulnerability: 424Information privacyNaive Bayes classifierComputer scienceRelational databasePrivacy softwareData securityConfidentialityNetwork monitoringIntrusion detection systemData miningcomputer.software_genrecomputer

description

Published version of a paper presented at the 2010 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). (c) 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Paper also available from the publisher:http://dx.doi.org/10.1109/PDP.2010.87 It is important to analyse the privacy impact of Intrusion Detection System (IDS) rules, in order to understand and quantify the privacy-invasiveness of network monitoring services. The objective in this paper is to classify Snort rules according to the risk of privacy violations in the form of leaking sensitive or confidential material. The classification is based on a ruleset that formerly has been manually categorised according to our PRIvacy LEakage (PRILE) methodology. Such information can be useful both for privacy impact assessments and automated tests for detecting privacy violations. Information about potentially privacy violating rules can subsequently be used to tune the IDS rule sets, with the objective to minimise the expected amount of data privacy violations during normal operation. The paper suggests some classification tasks that can be useful both to improve the PRILE methodology and for privacy violation evaluation tools. Finally, two selected classification tasks are analysed by using a Naive Bayes classifier.

http://hdl.handle.net/11250/137754