6533b7d5fe1ef96bd126481f

RESEARCH PRODUCT

Oxidative DNA damage and mutations induced by a polar photosensitizer, Ro19-8022.

Elmar GockeHanns-christian MahlerInge EckertMichael PflaumOlaf WillBernd EpeIna Schulz

subject

PyrrolidinesDNA damageMolecular Sequence DataCHO CellsBiologyToxicologymedicine.disease_causechemistry.chemical_compoundPlasmidCricetinaeGeneticsmedicineAnimalsPhotosensitizerMutation frequencyMolecular BiologyGenePhotosensitizing AgentsBase SequenceCell-Free SystemChinese hamster ovary cellOxidative StressBiochemistrychemistryDNA ViralMutationDNAOxidative stressQuinolizinesDNA Damage

description

The oxidative DNA damage induced by the polar photosensitizer Ro19-8022 in the presence of light was studied and correlated with the associated mutagenicity. Both in isolated DNA and AS52 Chinese hamster ovary cells, photoexcited Ro19-8022 gave rise to a DNA damage profile that was similar to that caused by singlet oxygen: base modifications sensitive to the repair endonuclease Fpg protein, which according to high-performance liquid chromatography (HPLC) analysis were predominantly 8-hydroxyguanine (8-oxoG) residues, were generated in much higher yield than single-strand breaks, sites of base loss (AP sites) and oxidative pyrimidine modifications sensitive to endonuclease III. Fifty percent of the Fpg-sensitive modifications were repaired within 2 h. Under conditions that induced 10 Fpg-sensitive modifications per 10(6) bp (six 8-oxoG residues per 10(6) bp), approximately 60 mutations per 10(6) cells were induced in the gpt locus of the AS52 cells. A rather similar mutation frequency was observed when a plasmid carrying the gpt gene was exposed to Ro19-8022 plus light under cell-free conditions and subsequently replicated in bacteria. Sequence analysis revealed that GC-->TA and GC-->CG transversions accounted for 90% of the base substitutions. A significant generation of micronuclei was detectable in AS52 cells exposed to the photosensitizer plus light as well.

10.1016/s0921-8777(99)00039-7https://pubmed.ncbi.nlm.nih.gov/10526220