0000000000005618

AUTHOR

Bernd Epe

Photolysis of N-hydroxpyridinethiones: a new source of hydroxyl radicals for the direct damage of cell-free and cellular DNA.

N-Hydroxypyridine-2-thione (2-HPT), known to release hydroxyl radicals on irradiation with visible light, and two related compounds, viz. N-hydroxypyridine-4-thione (4-HPT) and N-hydroxyacridine-9-thione (HAT), were tested for their potency to induce DNA damage in L1210 mouse leukemia cells and in isolated DNA from bacteriophage PM2. DNA single-strand breaks and modifications sensitive to various repair endonucleases (Fpg protein, endonuclease III, exonuclease III, T4 endonuclease V) were quantified. Illumination of cell-free DNA in the presence of 2-HPT and 4-HPT gave rise to damage profiles characteristic for hydroxyl radicals, i.e. single-strand breaks and the various endonuclease-sensit…

research product

DNA damage photo-induced by chloroharmine isomers: hydrolysis versus oxidation of nucleobases

Photodynamic therapy (PDT) is an emerging clinical treatment currently being used against a wide range of both cancerous and noncancerous diseases. The search for new active photosensitizers as well as the development of novel selective delivery systems are the major challenges faced in the application of PDT. We investigated herein three chloroharmine derivatives (6-, 8- and 6,8-dichloroharmines) with quite promising intrinsic photochemical tunable properties and their ability to photoinduce DNA damage in order to elucidate the underlying photochemical mechanisms. Data revealed that the three compounds are quite efficient photosensitizers. The overall extent of photo-oxidative DNA damage i…

research product

Oxidatively generated DNA base modifications: Relation to eustress and distress

Abstract Oxidative stress at the DNA, i.e., the generation of DNA damage by endogenously produced reactive oxygen species, is of particular concern as it can give rise to mutations and thereby an increased cancer risk. On the other hand, there is accumulating evidence that oxidized DNA bases, in particular 8-oxo-7,8-dihydroguanine (8-oxoG), are actively generated in mammalian cells as epigenetic marks and are involved in transcriptional regulation. To better understand this apparent paradox, this chapter first describes the types and mechanisms of DNA damage under conditions of exogenous and endogenous oxidative stress. It then summarizes the indications that oxidatively generated DNA damag…

research product

New aspects of photogenotoxicity testing: Prevalidation of the photo-micronucleus test and the photo-comet assay

research product

Endogenous DNA Damage and Its Relevance for the Initiation of Carcinogenesis

research product

Characterization of hOGG1 Promoter Structure, Expression During Cell Cycle and Overexpression in Mammalian Cells

Oxygen radicals are produced in all cells either by the normal cellular metabolism or by the exposure to external mutagens. The reactive oxygen species (ROS) generated can induce DNA damage. Among the principal lesions found in DNA due to ROS is an oxidized form of guanine, 8-oxo-7,8-dihydroguanine (8-oxoG). The biological relevance of this lesion has been unveiled by the study of Escherichia colt and Saccharomyces cerevisiae genes involved in the neutralization of the mutagenic effects of 8-oxoG (Cabrera et al., 1988; Nghiem et al., 1988; Radicella et al., 1988; van der Kemp et al., 1996). These genes fpg and mutY for E. colt and OGG1 for yeast, code for DNA glycosylases. Inactivation of a…

research product

Poly(ADP-ribosyl)ation accelerates DNA repair in a pathway dependent on Cockayne syndrome B protein

Activation of poly(ADP-ribose)polymerases 1 and 2 (PARP-1 and PARP-2) is one of the earliest responses of mammalian cells to DNA damage by numerous genotoxic agents. We have analysed the influence of PARP inhibition, either achieved by over-expression of the DNA binding domain of PARP-1 or by treatment with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone, on the repair of single-strand breaks (SSB), pyrimidine dimers and oxidative base modifications sensitive to Fpg protein (mostly 8-hydroxyguanine) in mammalian cells at very low, non-cytotoxic levels of DNA damage. The data show that the repair rates of all three types of DNA damage are significantly lower in PARP-inhibited c…

research product

Oxidative DNA damage and mutations induced by a polar photosensitizer, Ro19-8022.

The oxidative DNA damage induced by the polar photosensitizer Ro19-8022 in the presence of light was studied and correlated with the associated mutagenicity. Both in isolated DNA and AS52 Chinese hamster ovary cells, photoexcited Ro19-8022 gave rise to a DNA damage profile that was similar to that caused by singlet oxygen: base modifications sensitive to the repair endonuclease Fpg protein, which according to high-performance liquid chromatography (HPLC) analysis were predominantly 8-hydroxyguanine (8-oxoG) residues, were generated in much higher yield than single-strand breaks, sites of base loss (AP sites) and oxidative pyrimidine modifications sensitive to endonuclease III. Fifty percent…

research product

Influence of nitric oxide on the generation and repair of oxidative DNA damage in mammalian cells

We have analysed the effects of endogenously and exogenously generated nitric oxide (NO) in cultured mammalian fibroblasts on: (i) the steady-state (background) levels of oxidative DNA base modifications; (ii) the susceptibility of the cells to the induction of additional DNA damage and micronuclei by H(2)O(2); and (iii) the repair kinetics of various types of DNA modifications. Steady-state levels of oxidative DNA base modifications, measured by means of an alkaline elution assay in combination with the repair endonuclease Fpg protein, were similar in NO-overproducing B6 mouse fibroblasts stably transfected with an inducible NO synthase (iNOS) and in control cells. Increased oxidative dama…

research product

Oxidative stress triggers the preferential assembly of base excision repair complexes on open chromatin regions

How DNA repair machineries detect and access, within the context of chromatin, lesions inducing little or no distortion of the DNA structure is a poorly understood process. Removal of oxidized bases is initiated by a DNA glycosylase that recognises and excises the damaged base, initiating the base excision repair (BER) pathway. We show that upon induction of 8-oxoguanine, a mutagenic product of guanine oxidation, the mammalian 8-oxoguanine DNA glycosylase OGG1 is recruited together with other proteins involved in BER to euchromatin regions rich in RNA and RNA polymerase II and completely excluded from heterochromatin. The underlying mechanism does not require direct interaction of the prote…

research product

Role of Endogenous Oxidative DNA Damage in Carcinogenesis: What Can We Learn from Repair-Deficient Mice?

Basal steady-state levels of oxidative DNA base modifications such as 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG) are observed in all types of cells, most probably due to a continuous generation of reactive oxygen species (ROS) in the cellular oxygen metabolism, and it has long been suspected that they might play an important role in the initiation of carcinogenesis. Experimental evidence for this assumption can be obtained by studying the effects of a modulation of the steady-state levels, either by in- or decreasing the generation of oxidative DNA damage, on spontaneous mutation rates and cancer incidence. However, clear answers have not yet been obtained by these strategies. It is still…

research product

Oxidative stress impairs the repair of oxidative DNA base modifications in human skin fibroblasts and melanoma cells.

Irradiation of mammalian cells with solar light is associated with the generation of reactive oxygen species (ROS) and oxidative stress, which is mediated in part by endogenous photosensitizers absorbing in the visible range of the solar spectrum. Accordingly, oxidative DNA base modifications such as 7,8-dihydro-8-oxoguanine (8-oxoG) are the predominant types of DNA damage in cells irradiated at wavelengths >400 nm. We have analysed the repair of oxidative purine modifications in human skin fibroblasts and melanoma cells using an alkaline elution technique, both under normal conditions and after depletion of glutathione. Similar repair rates were observed in fibroblasts and melanoma cells f…

research product

Photochemical and Photobiological Studies of a Furonaphthopyranone as a Benzo-spaced Psoralen Analog in Cell-free and Cellular DNA

Photobiological activities of the benzo-spaced psoralen analog furonaphthopyranone 3 have been investigated in cell-free and cellular DNA. The molecular geometry parameters of 3 suggest that it should not form interstrand crosslinks with DNA. With cell-free DNA no evidence for crosslinking but also not for monoadduct formation was obtained; rather, the unnatural furocoumarin 3 induces oxidative DNA modifications under near-UVA irradiation. The enzymatic assay of the photosensitized damage in cell-free PM2 DNA revealed the significant formation of lesions sensitive to formamidopyrimidine DNA glycosylase (Fpg protein). In the photooxidation of calf thymus DNA by the furonaphthopyranone 3, 0.2…

research product

Deficiency of the Cockayne syndrome B (CSB) gene aggravates the genomic instability caused by endogenous oxidative DNA base damage in mice.

The Cockayne syndrome B protein (CSB) has long been known to be involved in the repair of DNA modifications that block the RNA polymerase in transcribed DNA sequences (transcription-coupled repair). Recent evidence suggests that it also has a more general role in the repair of oxidative DNA base modifications such as 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG). In mammalian cells, 8-oxoG is a substrate of the repair glycosylase OGG1. Mice without this enzyme accumulate 8-oxoG in the genome and have elevated spontaneous mutation rates. To elucidate the role of CSB in the prevention of mutations by oxidative DNA base damage, we have generated mice that are deficient in Csb or Ogg1 or both ge…

research product

Cockayne syndrome: varied requirement of transcription-coupled nucleotide excision repair for the removal of three structurally different adducts from transcribed DNA.

Hereditary defects in the transcription-coupled nucleotide excision repair (TC-NER) pathway of damaged DNA cause severe neurodegenerative disease Cockayne syndrome (CS), however the origin and chemical nature of the underlying DNA damage had remained unknown. To find out, to which degree the structural properties of DNA lesions determine the extent of transcription arrest in human CS cells, we performed quantitative host cell reactivation analyses of expression vectors containing various synthetic adducts. We found that a single 3-(deoxyguanosin-N 2-yl)-2-acetylaminofluorene adduct (dG(N 2)-AAF) constitutes an unsurmountable obstacle to transcription in both CS-A and CS-B cells and is remov…

research product

The basal levels of 8-oxoG and other oxidative modifications in intact mitochondrial DNA are low even in repair-deficient (Ogg1(-/-)/Csb(-/-)) mice.

Abstract Mitochondrial DNA (mtDNA) is assumed to be highly prone to damage by reactive oxygen species (ROS) because of its location in close proximity to the mitochondrial electron transport chain. Accordingly, mitochondrial oxidative DNA damage has been hypothesized to be responsible for various neurological diseases, ageing and cancer. Since 7,8-dihydro-8-oxoguanine (8-oxoG), one of the most frequent oxidative base modifications, is removed from the mitochondrial genome by the glycosylase OGG1, the basal levels of this lesion are expected to be highly elevated in Ogg1−/− mice. To investigate this hypothesis, we have used a mtDNA relaxation assay in combination with various repair enzymes …

research product

DNA damage profiles induced by oxidizing agents

research product

DNA damage by peroxynitrite characterized with DNA repair enzymes.

The DNA damage induced by peroxynitrite in isolated bacteriophage PM2 DNA was characterized by means of several repair enzymes with defined substrate specificities. Similar results were obtained with peroxynitrite itself and with 3-morpholinosydnonimine (SIN-1), a compound generating the precursors of peroxynitrite, nitric oxide and superoxide. A high number of base modifications sensitive to Fpg protein which, according to HPLC analysis, were mostly 8-hydroxyguanine residues, and half as many single-strand breaks were observed, while the numbers of oxidized pyrimidines (sensitive to endonuclease III) and of sites of base loss (sensitive to exonuclease III or T4 endonuclease V) were relativ…

research product

Squaraine Dyes for Photodynamic Therapy: Mechanism of Cytotoxicity and DNA Damage Induced by Halogenated Squaraine Dyes Plus Light (>600 nm)¶

Halogenated squaraine dyes 1 and 2 possess favorable photophysical and in vitro photobiological properties that make these new class of molecules interesting for photodynamic therapeutic applications. For a better understanding of the mechanism of their photobiological activity, we have analyzed the DNA damage and the cytotoxicity induced by these photosensitizers in mammalian cells and cell-free systems in the presence and absence of various additives and scavengers. Both photoactivated squaraines were found to be similar efficient in inducing single-strand breaks (SSB) in cell-free DNA when compared with the cellular DNA. Superoxide dismutase and catalase did not show any influence. Howev…

research product

Study of the Mode and Efficiency of DNA Binding in the Damage Induced by Photoactivated Water Soluble Porphyrins

We have investigated the DNA binding interactions and in vitro photoactivated DNA damage induced by a neutral water soluble porphyrin derivative 5,10,15,20-tetrakis(2,4,6-trihydroxyphenyl)porphyrin (TTHPP) and its zinc derivative 5,10,15,20-tetrakis(2,4,6-trihydroxyphenyl)porphyrinato zinc(II) (Zn-TTHPP) upon visible light irradiation through various spectroscopic techniques and employing repair endonucleases. These porphyrin derivatives exhibited high affinity toward DNA through groove binding interactions as evidenced through the UV-vis absorption, emission, circular dichroism spectral and viscosity changes. Interestingly, the free base porphyrin derivative, TTHPP generated efficient sing…

research product

Intra- and extra-cellular DNA damage by harmine and 9-methyl-harmine

It is known that b-carbolines are able to produce photosensitized damage in cell-free DNA, but there is little information on their effects on cellular DNA. Therefore, we have analyzed the DNA damage produced by harmine and 9-methyl-harmine under UVA irradiation in V79 cells, together with the associated generation of micronuclei and photocytotoxicity. The results indicate that the most frequent photoproducts generated in the cellular DNA are modified purines such as 8-oxo-7,8-dihydroguanine. Only relatively few single-strand breaks were observed. CPDs were absent, although they were generated in cell-free DNA irradiated under the same conditions. The overall extent of DNA damage in the cel…

research product

Human cytochrome P450 reductase can act as a source of endogenous oxidative DNA damage and genetic instability.

Studies with repair-deficient mice and other experiments suggest that oxidative DNA modifications are generated in all types of cells even under physiological conditions and that this type of endogenous DNA damage contributes to spontaneous cancer incidence. However, the cellular sources of reactive oxygen species that are relevant for nuclear oxidative DNA damage are largely unknown. Here, we report that expression of human NADPH-cytochrome P450 reductase (hOR) in cultured V79 Chinese hamster cells gives rise to elevated basal levels of oxidative purine modifications after depletion of glutathione. Also, the basal levels of micronuclei are increased in the hOR-expressing cells, and again t…

research product

Classification or non-classification of substances with positive tumor findings in animal studies: Guidance by the German MAK commission

One of the important tasks of the German Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area (known as the MAK Commission) is in the evaluation of a potential for carcinogenicity of hazardous substances at the workplace. Often, this evaluation is critically based on data on carcinogenic responses seen in animal studies and, if positive tumor responses have been observed, this will mostly lead to a classification of the substance under investigation into one of the classes for carcinogens. However, there are cases where it can be demonstrated with a very high degree of confidence that the tumor findings in the experimental animals are not relevant…

research product

Impaired DNA demethylation of C/EBP sites causes premature aging

Changes in DNA methylation are among the best-documented epigenetic alterations accompanying organismal aging. However, whether and how altered DNA methylation is causally involved in aging have remained elusive. GADD45α (growth arrest and DNA damage protein 45A) and ING1 (inhibitor of growth family member 1) are adapter proteins for site-specific demethylation by TET (ten-eleven translocation) methylcytosine dioxygenases. Here we show that Gadd45a/Ing1 double-knockout mice display segmental progeria and phenocopy impaired energy homeostasis and lipodystrophy characteristic of Cebp (CCAAT/enhancer-binding protein) mutants. Correspondingly, GADD45α occupies C/EBPβ/δ-dependent superenhancers …

research product

Wavelength dependence of oxidative DNA damage induced by UV and visible light.

DNA damage induced by UV radiation and visible light (290-500 nm) in AS52 Chinese hamster cells was analysed by an alkaline elution assay with specific repair endonucleases. Cells were exposed to extensively filtered monochrome or broad-band radiation. Between 290 and 315 nm, the ratio of base modifications sensitive to Fpg protein (i.e. 8-hydroxyguanine and formamidopyrimidines) and T4 endonuclease V (i.e. cyclobutane pyrimidine dimers) was constant (approximately 1:200), indicating that the direct excitation of DNA is responsible for both types of damage in this range of the spectrum. While the yield of pyrimidine dimers per unit dose continued to decrease exponentially beyond 315 nm, the…

research product

Photoinduced DNA damage efficiency and cytotoxicity of novel viologen linked pyrene conjugates.

Novel viologen linked pyrene conjugates permeate cells efficiently and exhibit spacer length dependent DNA damage and cytotoxicity upon photoexcitation.

research product

PO-002 Angiotensin II-induced hypertension increases the mutation frequency in the rat kidney

Introduction Epidemiological studies revealed an increased risk for kidney cancer in hypertensive patients. In many of these patients, the blood pressure regulating renin angiotensin aldosterone system (RAAS) is activated. A stimulated RAAS can lead to oxidative stress and DNA damage, as we have shown both in vitro and in animal models of hypertension. Here, we used a rat model to quantify mutations generated by 20 weeks of angiotensin II-infusion. Material and methods BigBlue+/- rats, which carry a transgenic lacI gene for mutation analysis, were treated with 0.4 mg angiotensin II/kg/day with the help of osmotic minipumps. Urinary samples were collected in week 15 by placing the rats into …

research product

Reactive oxygen species derived from the mitochondrial respiratory chain are not responsible for the basal levels of oxidative base modifications observed in nuclear DNA of mammalian cells

The mitochondrial electron transport chain (ETC) is the most important source of reactive oxygen species (ROS) in mammalian cells. To assess its relevance to the endogenous generation of oxidative DNA damage in the nucleus, we have compared the background (steady-state) levels of oxidative DNA base modifications sensitive to the repair glycosylase Fpg (mostly 7,8-dihydro-8-oxoguanine) in wild-type HeLa cells and HeLa rho0 cells. The latter are depleted of mitochondrial DNA and therefore are unable to produce ROS in the ETC. Although the levels of ROS measured by flow cytometry and redox-sensitive probes in rho0 cells were only 10-15% those of wild-type cells, steady-state levels of oxidativ…

research product

Visible light (>395nm) causes micronuclei formation in mammalian cells without generation of cyclobutane pyrimidine dimers

Solar radiation gives rise to DNA damage in mammalian cells not only directly by excitation of DNA, which generates predominantly pyrimidine dimers, but also indirectly by the excitation of endogenous photosensitizers, which causes oxidative DNA modifications. The latter mechanism has a low quantum yield, but it is the only one proceeding in the visible range of the spectrum. To investigate its relevance for the genotoxicity of sunlight, we have analysed the generation of micronuclei associated with the induction of oxidative DNA damage by visible light in melanoma cells and primary human skin fibroblasts. Similar yields of light-induced oxidative DNA base modifications sensitive to the rep…

research product

A novel form of ataxia oculomotor apraxia characterized by oxidative stress and apoptosis resistance

Several different autosomal recessive genetic disorders characterized by ataxia with oculomotor apraxia (AOA) have been identified with the unifying feature of defective DNA damage recognition and/or repair. We describe here the characterization of a novel form of AOA showing increased sensitivity to agents that cause single-strand breaks (SSBs) in DNA but having no gross defect in the repair of these breaks. Evidence for the presence of residual SSBs in DNA was provided by dramatically increased levels of poly (ADP-ribose)polymerase (PARP-1) auto-poly (ADP-ribosyl)ation, the detection of increased levels of reactive oxygen/nitrogen species (ROS/RNS) and oxidative damage to DNA in the patie…

research product

Photochemical genotoxicity: principles and test methods

In recent years, assessing the photogenotoxic potential of a compound became an issue for certain drugs and cosmetical products. Therefore, existing methods performed according to international guidelines (e.g. OECD guidelines) were adapted to the use of concurrent UV-visible (UV-Vis) light irradiation for the assessment of photomutagenicity/photogenotoxicity. In this review, photobiological bases of the processes occurring in the cell after irradiation with UV- and/or visible (vis)-light as well as a compilation of testing methods is presented. Methods comprise cell free investigations on naked DNA and in vitro methods, such as the photo-Ames test, the photo-HPRT/photo-mouse lymphoma assay…

research product

Excision of Uracil from Transcribed DNA Negatively Affects Gene Expression

Uracil is an unavoidable aberrant base in DNA, the repair of which takes place by a highly efficient base excision repair mechanism. The removal of uracil from the genome requires a succession of intermediate products, including an abasic site and a single strand break, before the original DNA structure can be reconstituted. These repair intermediates are harmful for DNA replication and also interfere with transcription under cell-free conditions. However, their relevance for cellular transcription has not been proved. Here we investigated the influence of uracil incorporated into a reporter vector on gene expression in human cells. The expression constructs contained a single uracil opposi…

research product

Determination of steady-state levels of oxidative DNA base modifications in mammalian cells by means of repair endonucleases

The alkaline elution technique in combination with various repair endonucleases (Fpg protein, endonuclease III, exonuclease III, T4 endonuclease V) was used to quantify steady-state (background) levels of oxidative base modifications in various types of mammalian cells. In human lymphocytes the number of base modifications sensitive to Fpg protein, which include 8-hydroxyguanine, was 0.25 +/- 0.05 per 10(6) base pairs. Even lower levels (0.07 +/- 0.02 per 10(6) bp) were observed in HeLa cells. The numbers of sites sensitive to the other repair endonucleases were below the detection limit (0.05 per 10(6) bp). In a direct comparison, the background level of Fpg-sensitive modifications determi…

research product

Interactions between DNA damage, repair, and transcription

This review addresses a variety of mechanisms by which DNA repair interacts with transcription and vice versa. Blocking of transcriptional elongation is the best studied of these mechanisms. Transcription recovery after damage therefore has often been used as a surrogate marker of DNA repair in cells. However, it has become evident that relationships between DNA damage, repair, and transcription are more complex due to various indirect effects of DNA damage on gene transcription. These include inhibition of transcription by DNA repair intermediates as well as regulation of transcription and of the epigenetic status of the genes by DNA repair-related mechanisms. In addition, since transcript…

research product

Interaction with OGG1 Is Required for Efficient Recruitment of XRCC1 to Base Excision Repair and Maintenance of Genetic Stability after Exposure to Oxidative Stress

International audience; XRCC1 is an essential protein required for the maintenance of genomic stability through its implication in DNA repair. The main function of XRCC1 is associated with its role in the single-strand break (SSB) and base excision repair (BER) pathways that share several enzymatic steps. We show here that the polymorphic XRCC1 variant R194W presents a defect in its interaction with the DNA glycosylase OGG1 after oxidative stress. While proficient for single-strand break repair (SSBR), this variant does not colocalize with OGG1, reflecting a defect in its involvement in BER. Consistent with a role of XRCC1 in the coordination of the BER pathway, induction of oxidative base …

research product

Mechanisms of DNA damage by photoexcited 9-methyl-β-carbolines

It has been well documented that β-carboline alkaloids, particularly the 9-methyl derivatives, are efficient photosensitizers. However, structure–activity relationships are missing and the photochemical mechanisms involved in the DNA photodamage still remain unknown. In the present work, we examined the capability of three 9-methyl-β-carbolines (9-methyl-norharmane, 9-methyl-harmane and 9-methylharmine) to induce DNA damage upon UVA excitation at physiological pH. The type and extent of the damage was analyzed together with the photophysical and binding properties of the β-carboline derivatives investigated. The results indicate that even at neutral pH most of the DNA damage is generated fr…

research product

A global DNA repair mechanism involving the Cockayne syndrome B (CSB) gene product can prevent the in vivo accumulation of endogenous oxidative DNA base damage

The Cockayne syndrome B (CSB) gene product is involved in the repair of various types of base modifications in actively transcribed DNA sequences. To investigate its significance for the repair of endogenous oxidative DNA damage, homozygous csb(-/-)/ogg1(-/-) double knockout mice were generated. These combine the deficiency of CSB with that of OGG1, a gene coding for the mammalian repair glycosylase that initiates the base excision repair of 7,8-dihydro-8-oxoguanine (8-oxoG). Compared to ogg1(-/-) mice, csb(-/-)/ogg1(-/-) mice were found to accumulate with age severalfold higher levels of oxidited purine modifications in hepatocytes, splenocytes and kidney cells. In contrast, the basal (ste…

research product

Nitrate and nitrite in the diet: How to assess their benefit and risk for human health

Nitrate is a natural constituent of the human diet and an approved food additive. It can be partially converted to nitrogen monoxide, which induces vasodilation and thereby decreases blood pressure. This effect is associated with a reduced risk regarding cardiovascular disease, myocardial infarction, and stroke. Moreover, dietary nitrate has been associated with beneficial effects in patients with gastric ulcer, renal failure, or metabolic syndrome. Recent studies indicate that such beneficial health effects due to dietary nitrate may be achievable at intake levels resulting from the daily consumption of nitrate-rich vegetables. N-nitroso compounds are endogenously formed in humans. However…

research product

Repair of oxidatively generated DNA damage in Cockayne syndrome

Defects in the repair of endogenously (especially oxidatively) generated DNA modifications and the resulting genetic instability can potentially explain the clinical symptoms of Cockayne syndrome (CS), a hereditary disease characterized by developmental defects and neurological degeneration. In this review, we describe the evidence for the involvement of CSA and CSB proteins, which are mutated in most of the CS patients, in the repair and processing of DNA damage induced by reactive oxygen species and the implications for the induction of cell death and mutations. Taken together, the data demonstrate that CSA and CSB, in addition to their established role in transcription-coupled nucleotide…

research product

Fanconi's anaemia cells have normal steady-state levels and repair of oxidative DNA base modifications sensitive to Fpg protein

Abstract Cells from Fanconi's anaemia (FA) patients are abnormally sensitive to oxygen. However, a distinct genetic defect in either the cellular defence against reactive oxygen species (ROS) or in their metabolic generation has not been identified to date. Recently, the gene for the human 8-hydroxyguanine (8-oxoG) glycosylase, which removes this oxidative base modification from the genome, has been localized on chromosome 3p25, i.e., in the same region as the FA complementation group D (FAD) gene. We therefore studied the removal of photosensitization-induced 8-oxoG residues from the DNA of FA cells, using Fpg protein, the bacterial 8-oxoG glycosylase, to quantify the lesions by alkaline e…

research product

Overexpression of Ogg1 in mammalian cells: effects on induced and spontaneous oxidative DNA damage and mutagenesis

Chinese hamster ovary cell lines (AA8 and AS52) were stably transfected to overexpress hOgg1 protein, the human DNA repair glycosylase for 7,8-dihydro-8-oxoguanine (8-oxoG). In the transfectants, the repair rate of 8-oxoG residues induced by either potassium bromate or the photosensitizer [R]-1-[(10-chloro-4-oxo-3-phenyl-4H-benzo[a]quinolizin-1-yl)-carbo nyl ]-2-pyrrolidinemethanolplus light was up to 3-fold more rapid than in the parental cells. However, the improved repair had little effect on the mutagenicity of potassium bromate in the guanine phosphoribosyl transferase (gpt) locus of the OGG1-transfected AS52 cells. The steady-state (background) levels of DNA base modifications sensiti…

research product

Oxidative damage of DNA: Repair and implications

research product

Environmental noise aggravates oxidative DNA damage, granulocyte oxidative burst and nitrate resistance in Ogg1−/− mice

research product

8-Oxoguanine DNA glycosylase (Ogg1) causes a transcriptional inactivation of damaged DNA in the absence of functional Cockayne syndrome B (Csb) protein

We have analysed the effect of oxidative guanine lesions on the expression of a transfected reporter gene in mouse embryonic fibroblasts deficient in Cockayne syndrome B protein (Csb) and/or the 8-oxoguanine DNA glycosylase (Ogg1). We used a highly sensitive flow cytometry-based approach and quantitative real-time PCR to measure the changes in gene expression caused by the presence of oxidised guanine residues generated by photosensitisation in the vector DNA. In wild-type cells, small numbers (one or three) of oxidised guanines did not affect gene expression at short times after transfections, whereas progressive reduction of the transgene expression was observed at later time points. Alth…

research product

Albumin-Folate Conjugates for Drug-targeting in Photodynamic Therapy.

Photodynamic therapy (PDT) is based on the cytotoxicity of photosensitizers in the presence of light. Increased selectivity and effectivity of the treatment is expected if a specific uptake of the photosensitizers into the target cells, often tumor cells, can be achieved. An attractive transporter for that purpose is the folic acid receptor α (FRα), which is overexpressed on the surface of many tumor cells and mediates an endocytotic uptake. Here, we describe the synthesis and photobiological characterization of polar β-carboline derivatives as photosensitizers covalently linked to folate-tagged albumin as the carrier system. The particles were taken up by KB (human carcinoma) cells within …

research product

Photosensitization of DNA by β-carbolines: Kinetic analysis and photoproduct characterization

β-Carbolines (βCs) are a group of alkaloids present in many plants and animals. It has been suggested that these alkaloids participate in a variety of significant photosensitized processes. Despite their well-established natural occurrence, the main biological role of these alkaloids and the mechanisms involved are, to date, poorly understood. In the present work, we examined the capability of three important βCs (norharmane, harmane and harmine) and two of its derivatives (N-methyl-norharmane and N-methyl-harmane) to induce DNA damage upon UV-A excitation, correlating the type and extent of the damage with the photophysical characteristics and DNA binding properties of the compounds. The r…

research product

The Peroxisome Proliferator WY-14,643 Promotes Hepatocarcinogenesis Caused by Endogenously Generated Oxidative DNA Base Modifications in Repair-Deficient Csbm/m/Ogg1−/− Mice

Abstract Basal levels of endogenously generated oxidative DNA modifications such as 7,8-dihydro-8-oxoguanine (8-oxoG) are present in apparently all mammalian cells, but their relevance for the generation of spontaneous cancers remains to be established. Both the 8-oxoG levels and the resulting spontaneous mutations are increased in the livers of Csbm/m/Ogg1−/− mice, which are deficient in the repair of 8-oxoG. In order to determine the consequences of these additional oxidative DNA modifications and mutations and thus assess the tumor initiating potency of this type of endogenous DNA damage, we treated Csbm/m/Ogg1−/− mice and repair-proficient controls with the peroxisome proliferator WY-14…

research product

Generation and characterization of tTS-H4: a novel transcriptional repressor that is compatible with the reverse tetracycline-controlled TET-ON system

Background Conditional gene regulatory systems ensuring tight and adjustable expression of therapeutic genes are central for developing future gene therapy strategies. Among various regulatory systems, tetracycline-controlled gene expression has emerged as a safe and reliable option. Moreover, the tightness of tetracycline-regulated gene switches can be substantially improved by complementing transcriptional activators with antagonizing repressors. Methods To develop novel tetracycline-responsive transcriptional repressors, we fused various transcriptional silencing domains to the TetR (B/E) DNA-binding and dimerization domain of the Tn10-encoded tetracycline resistance operon (TetR (B/E)).…

research product

[33] Use of repair endonucleases to assess DNA damage by peroxynitrite

Publisher Summary This chapter discusses the use of repair endonucleases to assess DNA damage by peroxynitrite. Repair endonucleases allow a convenient quantification of various types of oxidative modifications induced by peroxynitrite, both in cultured cells and in cell-free DNA. The high sensitivity of the assays allows highly ectotoxic exposure conditions to be avoided—as well as the generation of secondary DNA modifications—that often become a problem at high levels of damage because primary DNA oxidation products can be orders of magnitude more reactive than the original bases, as demonstrated for the reaction of 8-hydroxyguanine with singlet oxygen. The ratio of the various types of m…

research product

Generation of reporter plasmids containing defined base modifications in the DNA strand of choice

Physiological effects of DNA bases other than A, G, C, and T as well as ways of removal of such bases from genomes are studied intensely. Methods for targeted insertion of modified bases into DNA, therefore, are highly demanded in the fields of DNA repair and epigenetics. This article describes efficient procedures for incorporation of modified DNA bases into a plasmid-borne enhanced green fluorescent protein (EGFP) gene. The procedure exploits excision of a stretch of 18 nt from either the transcribed or nontranscribed DNA strand with the help of the sequence-specific nicking endonucleases Nb.Bpu10I and Nt.Bpu10I. The excised single-stranded oligonucleotide is then swapped for a synthetic …

research product

DNA Oxidation Photoinduced by Norharmane Rhenium(I) Polypyridyl Complexes: Effect of the Bidentate N,N′-Ligands on the Damage Profile

Re(I)--polypyridyl complexes have interesting and distinctive photochemical and photosensitizing properties. This work describes the capability to induce (or photoinduce) DNA damage of three Re(I)-complexes with a naturally occurring alkaloid called norharmane (nHo) as ligand: [Re(CO)₃ (nHo)(L)]CF₃ SO₃ where L=2,2'-bipyridine (ReBpy), phenanthroline (RePhen) or dipyrido[3,2-a:2',3'-c]phenazine (ReDppz). The interaction of the complexes with DNA was investigated by steady-state and time-resolved spectroscopy. Data show that the mode and strength of interaction depend on the chemical structure of the bidentate ligand. The complexes show a major static contribution to the overall interaction, …

research product

Photochemical and photobiological studies with acridine and phenanthridine hydroperoxides in cell-free DNA.

The acridine and phenanthridine hydroperoxides 3 and 7 were synthesized as photochemical hydroxyl radical sources for oxidative DNA damage studies. The generation of hydroxyl radicals upon UVA irradiation (lambda = 350 nm) was verified by trapping experiments with 5,5-dimethyl-1-pyrroline N-oxide and benzene. The enzymatic assays of the damage in cell-free DNA from bacteriophage PM2 caused by the acridine and phenanthridine hydroperoxides 3 and 7 under near-UVA irradiation revealed a wide range of DNA modifications. Particularly, extensive single-strand break formation and DNA base modifications sensitive to formamidopyrimidine DNA glycosylase (Fpg protein) were observed. In the photooxidat…

research product

Photogenotoxicity of folic acid.

Folic acid (FA), also named vitamin B9, is an essential cofactor for the synthesis of DNA bases and other biomolecules after bioactivation by dihydrofolate reductase (DHFR). FA is photoreactive and has been shown to generate DNA modifications when irradiated with UVA (360 nm) in the presence of DNA under cell-free conditions. To investigate the relevance of this reaction for cells and tissues, we irradiated three different cell lines (KB nasopharyngeal carcinoma cells, HaCaT keratinocytes, and a melanoma cell line) in the presence of FA and quantified cytotoxicity and DNA damage generation. The results indicate that FA is phototoxic and photogenotoxic by two different mechanisms. First, ext…

research product

Is the repair of oxidative DNA base modifications inducible by a preceding DNA damage induction?

In mammalian cells, 7,8-dihydro-8-oxoguanine (8-oxoG) and some other oxidative guanine modifications are removed from the DNA by base excision repair, which is initiated by OGG1 protein. We have tested whether this repair is inducible in mouse embryonic fibroblasts (MEFs), MCF-7 breast cancer cells and primary human fibroblasts by a pretreatment with the photosensitizer Ro19-8022 plus light, which generates predominantly 8-oxoG, or with methyl methanesulfonate (MMS), which generates alkylated bases and abasic sites (AP sites). The results indicate that the repair rate of the oxidative guanine modifications induced by the photosensitizer was not increased if a priming dose of the oxidative o…

research product

Oxidative DNA damage induced by visible light in mammalian cells: extent, inhibition by antioxidants and genotoxic effects

The extent of the indirect DNA damage generated in mammalian cells by visible light because of the presence of endogenous photosensitizers was studied by means of repair endonucleases. In immortalized human keratinocytes (HaCaT cells) exposed to low doses of natural sunlight, the yield of oxidative DNA base modifications sensitive to the repair endonuclease formamidopyrimidine-DNA glycosylase (Fpg protein) generated by this indirect mechanism was 10% of that of pyrimidine dimers (generated by direct DNA excitation). A similar yield of Fpg-sensitive modifications, which include 8-hydroxyguanine, was observed in primary keratinocytes. The relative yield of oxidative base modifications decreas…

research product

Lovastatin protects human endothelial cells from the genotoxic and cytotoxic effects of the anticancer drugs doxorubicin and etoposide

Background and purpose: 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) are frequently used lipid-lowering drugs. Moreover, they exert pleiotropic effects on cellular stress responses and death. Here, we analysed whether lovastatin affects the sensitivity of primary human endothelial cells (HUVEC) to the anticancer drug doxorubicin. Experimental approach: We investigated whether pretreatment of HUVEC with low dose of lovastatin influences the cellular sensitivity to doxorubicin. To this end, cell viability, proliferation and apoptosis as well as DNA damage-triggered stress response were analysed. Key results: Lovastatin reduced the cytotoxic potency of doxorub…

research product

Assessment of mechanisms driving non-linear dose-response relationships in genotoxicity testing.

In genetic toxicology, risk assessment has traditionally adopted linear dose-responses for any compound that causes genotoxic effects. Increasing evidence of non-linear dose-responses, however, suggests potential cellular tolerance to low levels of many genotoxicants with diverse modes of action. Such putative non-linear dose-responses need to be substantiated by strong mechanistic data that identifies the mechanisms responsible for the tolerance to low doses. This can be achieved by experimental demonstration of cytoprotective mechanisms and by providing experimental support for the existence of tolerance mechanisms against low dose effects. By highlighting key experiments into low dose me…

research product

Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark?

The generation of DNA modifications in cells is in most cases accidental and associated with detrimental consequences such as increased mutation rates and an elevated risk of malignant transformation. Accordingly, repair enzymes involved in the removal of the modifications have primarily a protective function. Among the well-established exceptions of this rule are 5-methylcytosine and uracil, which are generated in DNA enzymatically under controlled conditions and fulfill important regulatory functions in DNA as epigenetic marks and in antibody diversification, respectively. More recently, considerable evidence has been obtained that also 8-oxo-7,8-dihydroguanine (8-oxoG), a frequent pro-mu…

research product

Squaraine Dyes for Photodynamic Therapy: Study of Their Cytotoxicity and Genotoxicity in Bacteria and Mammalian Cells¶‡

Halogenated squaraine dyes are characterized by long wavelength absorption (>600 nm) and high triplet yields and therefore represent new types of photosensitizers that could be useful for photodynamic therapy. We have analyzed the cytotoxicity and genotoxicity of the bromo derivative 1, the iodo derivative 2 and the corresponding nonhalogenated dye 3 in the absence and presence of visible light. At concentrations of 1-2 microM, 1 and 2 reduced the cloning efficiency of AS52 Chinese hamster ovary cells to less than 1% under conditions that were well tolerated in the dark. Similarly, the proliferation of L5178Y mouse lymphoma cells was inhibited by photoexcited 1 and 2 with high selectivity. …

research product

Steady-state (background) levels of oxidative DNA modifications in mammalian cells

research product

Modulation of base excision repair of 8-oxoguanine by the nucleotide sequence.

8-Oxoguanine (8-oxoG) is a major product of oxidative DNA damage, which induces replication errors and interferes with transcription. By varying the position of single 8-oxoG in a functional gene and manipulating the nucleotide sequence surrounding the lesion, we found that the degree of transcriptional inhibition is independent of the distance from the transcription start or the localization within the transcribed or the non-transcribed DNA strand. However, it is strongly dependent on the sequence context and also proportional to cellular expression of 8-oxoguanine DNA glycosylase (OGG1)-demonstrating that transcriptional arrest does not take place at unrepaired 8-oxoG and proving a causal…

research product

The Friedreich's Ataxia protein frataxin modulates DNA base excision repair in prokaryotes and mammals

DNA-repair mechanisms enable cells to maintain their genetic information by protecting it from mutations that may cause malignant growth. Recent evidence suggests that specific DNA-repair enzymes contain ISCs (iron–sulfur clusters). The nuclearencoded protein frataxin is essential for the mitochondrial biosynthesis of ISCs. Frataxin deficiency causes a neurodegenerative disorder named Friedreich's ataxia in humans. Various types of cancer occurring at young age are associated with this disease, and hence with frataxin deficiency. Mice carrying a hepatocyte-specific disruption of the frataxin gene develop multiple liver tumours for unresolved reasons. In the present study, we show that frata…

research product

Spontaneous mutagenesis in Csb(m/m)Ogg1⁻(/)⁻ mice is attenuated by dietary resveratrol.

Oxidative DNA modifications such as 7,8-dihydro-8-oxoguanine (8-oxoG) are generated endogenously in apparently all living cells. The defect of the repair of 8-oxoG in Csb m/m Ogg1 ―/― mice results in elevated basal levels of these lesions and increased frequencies of spontaneous mutations, which initiate tumorigenesis in the liver if cell proliferation is stimulated. Here, we describe that the phytoalexin resveratrol, applied either for 7 days per gavage (100 mg/kg body wt) or for 3―9 months in the diet (0.04% ad libitum), reduces the endogenous oxidative DNA base damage in the livers of the Csb m/m Ogg1 ―/― mice by 20―30% (P < 0.01). A small but consistent effect is also observed in the wi…

research product

Gene silencing induced by oxidative DNA base damage: association with local decrease of histone H4 acetylation in the promoter region

Oxidized DNA bases, particularly 7,8-dihydro-8-oxoguanine (8-oxoG), are endogenously generated in cells, being a cause of carcinogenic mutations and possibly interfering with gene expression. We found that expression of an oxidatively damaged plasmid DNA is impaired after delivery into human host cells not only due to decreased retention in the transfected cells, but also due to selective silencing of the damaged reporter gene. To test whether the gene silencing was associated with a specific change of the chromatin structure, we determined the levels of histone modifications related to transcriptional activation (acetylated histones H3 and H4) or repression (methylated K9 and K27 of the hi…

research product

Senataxin defective in ataxia oculomotor apraxia type 2 is involved in the defence against oxidative DNA damage

Adefective response to DNA damage is observed in several human autosomal recessive ataxias with oculomotor apraxia, including ataxia-telangiectasia. We report that senataxin, defective in ataxia oculomotor apraxia (AOA) type 2, is a nuclear protein involved in the DNA damage response. AOA2 cells are sensitive to H2O2, camptothecin, and mitomycin C, but not to ionizing radiation, and sensitivity was rescued with full-length SETX cDNA. AOA2 cells exhibited constitutive oxidative DNA damage and enhanced chromosomal instability in response to H2O2. Rejoining of H2O2-induced DNA double-strand breaks (DSBs) was significantly reduced in AOA2 cells compared to controls, and there was no evidence fo…

research product

Alterations of DNA Repair in Melanoma Cell Lines Resistant to Cisplatin, Fotemustine, or Etoposide

Resistance to chemotherapy is a common phenomenon in malignant melanoma. In order to assess the role of altered DNA repair in chemoresistant melanoma, we investigated different DNA repair pathways in one parental human melanoma line (MeWo) and in sublines of MeWo selected in vitro for drug resistance against four commonly used drugs (cisplatin, fotemustine, etoposide, and vindesine). Host cell reactivation assays with the plasmid pRSVcat were used to assess processing of different DNA lesions. With ultraviolet-irradiated plasmids, no significant differences were found, indicating a normal (nucleotide excision) repair of DNA photoproducts. With singlet oxygen-treated plasmid, the fotemustine…

research product

Contributions - C: Carcinogenic Factors: Endogenous

research product

UVA irradiation induces relocalisation of the DNA repair protein hOGG1 to nuclear speckles

The DNA glycosylase hOGG1 initiates base excision repair (BER) of oxidised purines in cellular DNA. Using confocal microscopy and biochemical cell fractionation experiments we show that, upon UVA irradiation of human cells, hOGG1 is recruited from a soluble nucleoplasmic localisation to the nuclear matrix. More specifically, after irradiation, hOGG1 forms foci colocalising with the nuclear speckles, organelles that are interspersed between chromatin domains and that have been associated with transcription and RNA-splicing processes. The use of mutant forms of hOGG1 unable to bind the substrate showed that relocalisation of hOGG1 does not depend on the recognition of the DNA lesion by the en…

research product

8-Oxo-7,8-dihydroguanine in DNA does not constitute a barrier to transcription, but is converted into transcription-blocking damage by OGG1.

The common DNA base modification 8-oxo-7,8-dihydroguanine (8-oxo-G) affects the efficiency and fidelity of transcription. We constructed plasmid substrates carrying single 8-oxo-G residues, specifically positioned in the transcribed or the non-transcribed DNA strands, to investigate their effects on the expression of an EGFP reporter gene and to explore the role of base excision repair in the mechanism of transcription inhibition. We report that 8-oxo-G does not directly block transcription in cells, since a single 8-oxo-G in the transcribed DNA strand did not reduce the EGFP expression levels in repair-deficient (OGG1-null) mouse embryonic fibroblast cell lines. Rather, inhibition of trans…

research product

Inter-laboratory validation of procedures for measuring 8-oxo-7,8-dihydroguanine/8-oxo-7,8-dihydro-2’-deoxyguanosine in DNA.

The aim of ESCODD, a European Commission funded Concerted Action, is to improve the precision and accuracy of methods for measuring 8-oxo-7,8-dihydroguanine (8-oxoGua) or the nucleoside (8-oxodG). On two occasions, participating laboratories received samples of different concentrations of 8-oxodG for analysis. About half the results returned (for 8-oxodG) were within 20% of the median values. Coefficients of variation (for three identical samples) were commonly around 10%. A sample of calf thymus DNA was sent, dry, to all laboratories. Analysis of 8-oxoGua/8-oxodG in this sample was a test of hydrolysis methods. Almost half the reported results were within 20% of the median value, and half …

research product

The repair of oxidized purines in the DNA of human lymphocytes requires an activation involving NF-YA-mediated upregulation of OGG1.

8-Oxoguanine DNA glycosylase (OGG1), which initiates the repair of DNA purine modifications such as 8-oxo-7,8-dihydroguanine (8-oxoG), is often regarded as a house keeping protein ubiquitously active in mammalian cells. We have analysed the repair rates of oxidized purines generated by photosensitization in peripheral human lymphocytes and observed that the cells were virtually unable to remove these lesions (less than 10% removal within 24h). However, stimulation of the lymphocytes with phytohemagglutinin (PHA) strongly accelerated the repair so that ∼30% of the lesions were repaired within 4h. Within 24h following PHA stimulation and preceding the induction of cell proliferation, Western …

research product

N-Methyl-β-carboline alkaloids: structure-dependent photosensitizing properties and localization in subcellular domains

N-Methyl-β-carboline (βC) alkaloids, including normelinonine F (1b) and melinonine F (2b), have been found in a vast range of living species playing different biological, biomedical and/or pharmacological roles. Despite this, molecular bases of the mechanisms through which these alkaloids would exert their effect still remain unknown. Fundamental aspects including the photosensitizing properties and intracellular internalization of a selected group of N-methyl-βC alkaloids were investigated herein. Data reveal that methylation of the βC main ring enhances its photosensitizing properties either by increasing its binding affinity with DNA as a biomolecular target and/or by increasing its oxid…

research product

Influence of glutathione levels and heat-shock on the steady-state levels of oxidative DNA base modifications in mammalian cells

The effects of thiols, ascorbic acid and thermal stress on the basal (steady-state) levels of oxidative DNA base modifications were studied. In various types of untreated cultured mammalian cells, the levels of total glutathione were found to be inversely correlated with the levels of DNA base modifications sensitive to the repair endonuclease Fpg protein, which include 8-hydroxyguanine (8-oxoG). A depletion of glutathione by treatment with buthionine sulphoximine increased the steady-state level in AS52 Chinese hamster cells by approximately 50%. However, additional thiols in the culture medium did not reduce the level of Fpg-sensitive base modifications: 0-10 mM N-acetylcysteine had no ef…

research product

Aggregation Behavior of Halogenated Squaraine Dyes in Buffer, Electrolytes, Organized Media, and DNA

Aggregation properties of bis(3,5-dibromo-2,4,6-trihydroxyphenyl)squaraine (1) and bis(3,5-diiodo-2,4,6-trihydroxyphenyl)squaraine (2) have been examined in buffer and in the presence of electrolytes, β-cyclodextrin, micelles and DNA. These dyes were found to form aggregates in buffer and methanol−water solutions that have absorption bands blue-shifted to those of the monomeric forms. The iodo derivative 2 forms aggregates at much lower concentrations (1.7 × 10-6 M) compared to the bromo derivative 1 (2.35 × 10-6 M) in 20% (vol/vol) methanol−buffer solution. Increase in methanol concentration in methanol−water solutions resulted in the disruption of the aggregates. The intermediate dimer in…

research product

Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (Ogg1) deficient mice.

Mutations that influence the repair of oxidative DNA modifications are expected to increase the steady-state (background) levels of these modifications and thus create a mutator phenotype that predisposes to malignant transformation. We have analysed the steady-state levels and repair kinetics of oxidative DNA modifications in cells of homozygous ogg1(-/-) null mice, which are deficient in Ogg1 protein, a DNA repair glycosylase that removes the miscoding base 8-hydroxyguanine (8-oxoG) from the genome. Oxidative purine modifications including 8-oxoG were quantified by means of an alkaline elution assay in combination with Fpg protein, the bacterial functional analogue of Ogg1 protein. In pri…

research product

Influences of histone deacetylase inhibitors and resveratrol on DNA repair and chromatin compaction

Accessibility of DNA is a prerequisite for both DNA damage and repair. Therefore, the chromatin structure is expected to have major impact on both processes, with opposite consequences for the stability of the genome. To analyse the influence of chromatin compaction on the generation and repair of various types of DNA modifications, we modulated the global chromatin structure of AS52 Chinese hamster ovary cells and HeLa cells by treatment with either histone deacetylase inhibitors or resveratrol and measured the repair kinetics of (i) pyrimidine dimers induced by ultraviolet B, (ii) oxidised purines generated by photosensitisation and (iii) single-strand breaks induced by H2O2, using an alk…

research product

[39] DNA damage induced by ultraviolet and visible light and its wavelength dependence

Publisher Summary DNA damage induced by solar radiation in mammalian cells consists largely of two types of modification: pyrimidine dimers and oxidative modifications. Pyrimidine dimmers that can be subdivided into cyclobutane pyrimidine dimmers, (CPDs) and (6-4) photoproducts are the characteristic and most abundant modifications after direct excitation of DNA, although they can also be formed indirectly by energy transfer from other excited molecules such as carbonyl compounds. Oxidative DNA damage, which includes various pyrimidine and purine modifications, sites of base loss (AP sites), and strand breaks, is generated in only low yield after direct excitation of DNA (except at very sho…

research product

Role of the DNA repair glycosylase OGG1 in the activation of murine splenocytes

OGG1 (8-oxoguanine-DNA glycosylase) is the major DNA repair glycosylase removing the premutagenic DNA base modification 8-oxo-7,8-dihydroguanine (8-oxoG) from the genome of mammalian cells. In addition, there is accumulating evidence that OGG1 and its substrate 8-oxoG might function in the regulation of certain genes, which could account for an attenuated immune response observed in Ogg1-/- mice in several settings. Indications for at least two different mechanisms have been obtained. Thus, OGG1 could either act as an ancillary transcription factor cooperating with the lysine-specific demethylase LSD1 or as an activator of small GTPases. Here, we analysed the activation by lipopolysaccaride…

research product

Oxidative DNA base damage induced by singlet oxygen and photosensitization: recognition by repair endonucleases and mutagenicity.

We have analyzed the recognition by various repair endonucleases of DNA base modifications induced by three oxidants, viz. [4-(tert-butyldioxycarbonyl)benzyl]triethylammonium chloride (BCBT), a photochemical source of tert-butoxyl radicals, disodium salt of 1,4-etheno-2,3-benzodioxin-1,4-dipropanoic acid (NDPO(2)), a chemical source of singlet oxygen, and riboflavin, a type-I photosensitizer. The base modifications induced by BCBT, which were previously shown to be mostly 7,8-dihydro-8-oxoguanine (8-oxoGua) residues, were recognized by Fpg and Ogg1 proteins, but not by endonuclease IIII, Ntg1 and Ntg2 proteins. In the case of singlet oxygen induced damage, 8-oxoGua accounted for only 35% of…

research product

Environmental aircraft noise aggravates oxidative DNA damage, granulocyte oxidative burst and nitrate resistance inOgg1–/–mice

Background: Large epidemiological studies point towards a link between the incidence of arterial hypertension, ischaemic heart disease, metabolic disease and exposure to traffic noise, supporting t...

research product

Oxidative DNA Damage Profiles in Mammalian Cells

Reactive oxygen species (ROS) are formed inside cells not only under the influence of exogenous agents (visible light, ionizing radiation, and many oxidants such as peroxides or quinones), but also under normal (physiological) conditions as byproducts of oxygen metabolism and other cellular redox reactions (Pryor 1986; Halliwell and Gutteridge 1986; Sies 1986; Clayson et al. 1994). ROS such as hydroxyl radicals and singlet oxygen are a serious threat to the integrity of the cellular genome, since they efficiently react with DNA to generate many types of DNA modifications, at least some of which are pre- mutagenic (Breimer 1990; Halliwell and Aruoma 1991; Epe 1991; Feig et al. 1994). Steady-…

research product

DNA oxidation products determined with repair endonucleases in mammalian cells: Types, basal levels and influence of cell proliferation

Purified repair endonucleases such as Fpg protein, endonuclease III and IV allow a very sensitive quantification of various types of oxidative DNA modifications in mammalian cells. By means of these assays, the numbers of base modifications sensitive to Fpg protein, which include 8-hydroxyguanine (8-oxoG), were determined to be less than 0.3 per 10(6) bp in several types of untreated cultured mammalian cells and human lymphocytes and less than 10 per 10(6) bp in mitochondrial DNA from rat and porcine liver. Oxidative 5,6-dihydropyrimidine derivatives sensitive to endonuclease III and sites of base loss sensitive to endonuclease IV or exonuclease III were much less frequent than Fpg-sensitiv…

research product

tert-Butoxyl radicals generate mainly 7,8-dihydro-8-oxoguanine in DNA.

Abstract Like hydroxyl radicals, alkoxyl radicals have been implicated in the generation of cellular oxidative DNA damage under physiological conditions; however, their genotoxic potential has not yet been established. We have analyzed the DNA damage induced by a photochemical source of tert- butoxyl radicals, the water soluble peroxy ester [4-( tert -butyldioxycarbonyl)benzyl]triethylammonium chloride (BCBT), using various repair endonucleases as probes. The irradiation (UV 360 ) of BCBT in the presence of bacteriophage PM2 DNA was found to generate a DNA damage profile that consisted mostly of base modifications sensitive to the repair endonuclease Fpg protein. Approximately 90% of the mo…

research product

Rapid inactivation and proteasome-mediated degradation of OGG1 contribute to the synergistic effect of hyperthermia on genotoxic treatments

Inhibition of DNA repair has been proposed as a mechanism underlying heat-induced sensitization of tumour cells to some anticancer treatments. Base excision repair (BER) constitutes the main pathway for the repair of DNA lesions induced by oxidizing or alkylating agents. Here, we report that mild hyperthermia, without toxic consequences per se, affects cellular DNA glycosylase activities, thus impairing BER. Exposure of cells to mild hyperthermia leads to a rapid and selective inactivation of OGG1 (8-oxoguanine DNA glycosylase) associated with the relocalisation of the protein into a detergent-resistant cellular fraction. Following its inactivation, OGG1 is ubiquitinated and directed to pro…

research product

Mouse CSB protein is important for gene expression in the presence of a single-strand break in the non-transcribed DNA strand.

CSB protein is required for strand-specific repair of bulky DNA lesions in transcribed genes and mediates transcription recovery after exposure to DNA-damaging agents. We enzymatically generated DNA single-strand breaks (SSBs) with 3'-OH and 5'-phosphate termini in defined positions of a plasmid-borne gene and measured their effect on transcription in cell lines with different statuses of the Csb gene. A single SSB in the transcribed region of the gene caused significant decrease of gene expression. In all tested cell lines of mouse and human origin, a SSB in the transcribed DNA strand was less harmful for gene expression than a SSB situated in the opposing DNA strand. CSB deficiency exhibi…

research product

Destabilized green fluorescent protein detects rapid removal of transcription blocks after genotoxic exposure

High stabilities of reporter proteins and their messenger RNAs (mRNAs) interfere with the detection of rapid transient changes in gene expression, such as transcriptional blocks posed by genotoxic DNA lesions. We have modified a green fluorescent protein (GFP) gene within the episomal pMARS vector by addition of a fragment encoding for mouse ornithine decarboxylase (ODC) proline-glutamate-serine-threonine-rich (PEST) sequence in order to target the protein to the proteasomes and achieved an unprecedentedly fast GFP turnover in permanently transfected human cells. As early as 1 h after inhibition of protein synthesis by cycloheximide, the number of fluorescent cells decreased more than 5-fo…

research product

DNA damage by bromate: Mechanism and consequences

Abstract Exposure of mammalian cells to bromate (BrO3−) generates oxidative DNA modifications, in particular 7,8-dihydro-8-oxo-guanine (8-oxoG). The damaging mechanism is quite unique, since glutathione, which is protective against most oxidants and alkylating agents, mediates a metabolic activation, while bromate itself does not react directly with DNA. Neither enzymes nor transition metals are required as catalysts in the activation. The ultimate DNA damaging species has not yet been established, but experiments under cell-free conditions suggest that neither molecular bromine nor reactive oxygen species such as superoxide, hydrogen peroxide or singlet oxygen are involved. Rather bromine …

research product