6533b7d3fe1ef96bd1261593

RESEARCH PRODUCT

Poly(ADP-ribosyl)ation accelerates DNA repair in a pathway dependent on Cockayne syndrome B protein

Bernd EpeAlexander BürkleJ. Pablo RadicellaClaudia Flohr

subject

DNA RepairDNA damageDNA repairPoly ADP ribose polymerase[SDV]Life Sciences [q-bio]Pyrimidine dimerBiologyPoly(ADP-ribose) Polymerase InhibitorsPoly (ADP-Ribose) Polymerase InhibitorCockayne syndromeDexamethasone03 medical and health sciencesMice0302 clinical medicinePiperidinesCricetinaeGeneticsmedicineAnimalsPoly-ADP-Ribose Binding ProteinsComputingMilieux_MISCELLANEOUS030304 developmental biologyCell Line TransformedMice Knockout0303 health sciencesDNA HelicasesArticlesDNADNA repair protein XRCC4Fibroblastsmedicine.diseaseIsoquinolinesMolecular biology3. Good healthDNA Repair Enzymes030220 oncology & carcinogenesisPoly(ADP-ribose) PolymerasesNucleotide excision repairDNA DamageSignal Transduction

description

Activation of poly(ADP-ribose)polymerases 1 and 2 (PARP-1 and PARP-2) is one of the earliest responses of mammalian cells to DNA damage by numerous genotoxic agents. We have analysed the influence of PARP inhibition, either achieved by over-expression of the DNA binding domain of PARP-1 or by treatment with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone, on the repair of single-strand breaks (SSB), pyrimidine dimers and oxidative base modifications sensitive to Fpg protein (mostly 8-hydroxyguanine) in mammalian cells at very low, non-cytotoxic levels of DNA damage. The data show that the repair rates of all three types of DNA damage are significantly lower in PARP-inhibited cells. Importantly, the retardation of the repair of base modifications is not associated with accumulation of intermediates such as SSB or abasic sites. Moreover, the influence of the PARP inhibition is not observed in cells deficient in Cockayne syndrome B protein (Csb). The results indicate that PARP activation and Csb are both involved in a novel mechanism that accelerates the global repair of various types of DNA modifications.

10.1093/nar/gkg715https://hal-cea.archives-ouvertes.fr/cea-03292540