6533b7d5fe1ef96bd12649c0

RESEARCH PRODUCT

Targeted delivery of hydrogen for the bioremediation of aquifers contaminated by dissolved chlorinated compounds.

Nicolas Fatin-rougeHossein DavarzaniJulien MaireStéfan Colombano

subject

010504 meteorology & atmospheric sciencesGroundwater flowHalogenationHealth Toxicology and MutagenesisGroundwater remediationAquifer010501 environmental sciencesToxicology01 natural sciencesDiffusionSurface-Active AgentsBioremediationDissolutionGroundwaterComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesgeographygeography.geographical_feature_categoryChemistryWaterGeneral MedicinePollution6. Clean waterPlumeBiodegradation Environmental13. Climate actionReagentEnvironmental chemistry[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]GroundwaterWater Pollutants ChemicalHydrogen

description

Dihydrogen (H2) gas injection is a promising option to enhance the reductive biodehalogenation of contaminants in groundwater. However, it is challenging to ensure its targeted delivery at the right places in plumes, and for the long times required for bioremediation. In this paper, the ability of surfactant foam to retain H2 in the saturated zone and to enhance its release in the dissolved form was compared to traditional biosparging. H2 gas was injected, either alone, or as foam, in a 2D saturated cell packed with glass beads. This cell was continuously flushed with deoxygenated water to mimic aquifer circulation, and H2 was studied both in terms of gas distribution in the cell and dissolved concentrations downstream the injection zone. Experimental results are discussed in conjunction with simulations obtained using modeling. Both show that the viscous behavior of foam allows to efficiently retain greater volumes of H2 gas, 3.5 times higher than biosparging. Moreover, it is retained in a dense manner around the injection point, making possible the targeted delivery of this reagent. Besides, the gas dissolution in groundwater showed to be steadier and more persistent when gas was injected as foam, with dissolution rate constants observed to be 1.12 a 1.58 times lower. Finally, the retained foamed-gas persistently reduced water's relative permeability 1.7 to 5 times, diverting the groundwater flow from the treated zone despite the fast elution of the surfactant. Hence, when H2-foam injection is targeted to plume's contaminant concentration hotspots, on top of enhancing bioremediation, it can reduce contaminant diffusion to groundwater.

10.1016/j.envpol.2019.03.033https://pubmed.ncbi.nlm.nih.gov/30913443