6533b7d5fe1ef96bd1264f28

RESEARCH PRODUCT

Exercises, Hints and Selected Solutions

Florian Scheck

subject

PhysicsCombinatoricsCanonical ensemblePartition function (statistical mechanics)Hamiltonian vector field

description

1.1. Prove the formula (1.8a) in Sect. 1.3, $$\displaystyle{ \int \mathrm{d}^{n}x\; =\int _{ 0}^{+\infty }\!\!\!\mathrm{d}r\;r^{n-1}\int _{ 0}^{2\pi }\!\!\!\mathrm{d}\phi \prod _{ k=1}^{n-2}\int _{ 0}^{\pi }\!\!\!\mathrm{d}\theta _{ k}\sin ^{k}(\theta _{ k}) }$$ (1.1) by means of induction.

https://doi.org/10.1007/978-3-319-40049-5_6