6533b7d5fe1ef96bd1264f28
RESEARCH PRODUCT
Exercises, Hints and Selected Solutions
Florian Schecksubject
PhysicsCombinatoricsCanonical ensemblePartition function (statistical mechanics)Hamiltonian vector fielddescription
1.1. Prove the formula (1.8a) in Sect. 1.3, $$\displaystyle{ \int \mathrm{d}^{n}x\; =\int _{ 0}^{+\infty }\!\!\!\mathrm{d}r\;r^{n-1}\int _{ 0}^{2\pi }\!\!\!\mathrm{d}\phi \prod _{ k=1}^{n-2}\int _{ 0}^{\pi }\!\!\!\mathrm{d}\theta _{ k}\sin ^{k}(\theta _{ k}) }$$ (1.1) by means of induction.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-01 |