6533b7d5fe1ef96bd1265112

RESEARCH PRODUCT

The Deep-Sea Natural Products, Biogenic Polyphosphate (Bio-PolyP) and Biogenic Silica (Bio-Silica), as Biomimetic Scaffolds for Bone Tissue Engineering: Fabrication of a Morphogenetically-Active Polymer

Qingling FengHeinz C. SchröderXiaohong WangFlorian G. DraenertWerner E.g. Müller

subject

ScaffoldCell signalingOsteoclastsPharmaceutical Sciencebio-polyphosphateReview02 engineering and technologyscaffoldBone morphogenetic protein 2Bone and BonesExtracellular matrix03 medical and health sciencesOsteoprotegerinBiomimetic MaterialsPolyphosphatesBMP-2Drug DiscoveryMorphogenesisAnimalsHumansbone tissue engineeringPharmacology Toxicology and Pharmaceutics (miscellaneous)lcsh:QH301-705.5030304 developmental biologymorphogenetic scaffoldsBiological Products0303 health sciencesOsteoblastsTissue EngineeringTissue Scaffoldsbiologybio-silicaChemistryMesenchymal stem cellRANKLAnatomySilicon Dioxide021001 nanoscience & nanotechnologyCell biologylcsh:Biology (General)RANKLosteoprotegerinbiology.proteinStem cell0210 nano-technology

description

Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fabricate a template that is functioning in a way mimicking the morphogenetic, inductive role(s) of the native extracellular matrix. In the last few years, two naturally occurring polymers that are produced by deep-sea sponges, the biogenic polyphosphate (bio-polyP) and biogenic silica (bio-silica) have also been identified as promoting morphogenetic on both osteoblasts and osteoclasts. These polymers elicit cytokines that affect bone mineralization (hydroxyapatite formation). In this manner, bio-silica and bio-polyP cause an increased release of BMP-2, the key mediator activating the anabolic arm of the hydroxyapatite forming cells, and of RANKL. In addition, bio-polyP inhibits the progression of the pre-osteoclasts to functionally active osteoclasts. Based on these findings, new bioinspired strategies for the fabrication of bone biomimetic templates have been developed applying 3D-printing techniques. Finally, a strategy is outlined by which these two morphogenetically active polymers might be used to develop a novel functionally active polymer.

10.3390/md11030718http://www.mdpi.com/1660-3397/11/3/718