6533b7d5fe1ef96bd12651dd

RESEARCH PRODUCT

Double parton correlations and constituent quark models: a light front approach to the valence sector

Vicente VentoMarco TrainiMatteo RinaldiSergio Scopetta

subject

Particle physicsNuclear and High Energy PhysicsNuclear TheoryPhysics beyond the Standard ModelConstituent quarkFOS: Physical sciencesParton01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsNuclear ExperimentPhenomenological ModelsPhysicsQuantum chromodynamicsValence (chemistry)Large Hadron Collider010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyFísicaHigh Energy Physics - PhenomenologyDistribution functionParton ModelPhenomenological Models Parton Model

description

An explicit evaluation of the double parton distribution functions (dPDFs), within a relativistic Light-Front approach to constituent quark models, is presented. dPDFs encode information on the correlations between two partons inside a target and represent the non-perturbative QCD ingredient for the description of double parton scattering in proton-proton collisions, a crucial issue in the search of new Physics at the LHC. Valence dPDFs are evaluated at the low scale of the model and the perturbative scale of the experiments is reached by means of QCD evolution. The present results show that the strong correlation effects present at the scale of the model are still sizable, in the valence region, at the experimental scale. At the low values of x presently studied at the LHC the correlations become less relevant, although they are still important for the spin-dependent contributions to unpolarized proton scattering.

10.1007/jhep12(2014)028http://www.openaccessrepository.it/record/10200/files/main.xml