6533b7d5fe1ef96bd126527e
RESEARCH PRODUCT
Polyunsaturated fatty acids interact with the PPARA-L162V polymorphism to affect plasma triglyceride and apolipoprotein C-III concentrations in the Framingham Heart Study.
Ernst J. SchaeferL. Adrienne CupplesSerkalem DemissieE. Shyong TaiOscar ColtellJose M. OrdovasDolores CorellaKatherine L. Tuckersubject
Malemedicine.medical_specialtyApolipoprotein BAlcohol DrinkingPopulationMedicine (miscellaneous)Peroxisome proliferator-activated receptorPolymorphism Single Nucleotidechemistry.chemical_compoundFramingham Heart StudyInternal medicinemedicineDiabetes MellitusHumansPPAR alphaeducationApolipoproteins CTriglycerideschemistry.chemical_classificationeducation.field_of_studyApolipoprotein C-IIISex CharacteristicsNutrition and DieteticsbiologyTriglycerideSmokingApolipoprotein C-IIILipid metabolismMiddle AgedDietary FatsEndocrinologychemistryAmino Acid SubstitutionCase-Control Studiesbiology.proteinFatty Acids Unsaturatedlipids (amino acids peptides and proteins)FemaleEnergy IntakePolyunsaturated fatty aciddescription
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear transcription factor regulating multiple genes involved in lipid metabolism. It was shown that a common leucine to valine (L162V) substitution at the PPARalpha gene (PPARA) is functional and affects transactivation activity of PPARalpha ligands, such as PUFA, on a concentration-dependent basis. The current study examined this gene-nutrient interaction in relation to plasma lipid variables in a population-based study consisting of 1003 men and 1103 women participating in the Framingham cohort and consuming their habitual diets. We found significant gene-nutrient interactions between the L162V polymorphism and total PUFA intake, which modulated plasma triglycerides (TG; P0.05) and apolipoprotein C-III (apoC-III; P0.05) concentrations. The 162V allele was associated with greater TG and apoC-III concentrations only in subjects consuming a low-PUFA diet (below the population mean, 6% of energy). However, when PUFA intake was high, carriers of the 162V allele had lower apoC-III concentrations. This interaction was significant even when PUFA intake was considered as a continuous variable (P = 0.031 for TG and P0.001 for apoC-III), suggesting a strong dose-response effect. When PUFA intake was4%, 162V allele carriers had approximately 28% higher plasma TG than did 162L homozygotes (P0.01). Conversely, when PUFA intake was8%, plasma TG in 162V allele carriers was 4% lower than in 162L homozygotes. Similar results were obtained for (n-6) and (n-3) fatty acids. Our data show that the effect of the L162V polymorphism on plasma TG and apoC-III concentrations depends on the dietary PUFA, with a high intake triggering lower TG in carriers of the 162V allele.
year | journal | country | edition | language |
---|---|---|---|---|
2005-03-01 | The Journal of nutrition |