6533b7d5fe1ef96bd1265306
RESEARCH PRODUCT
GHZ state generation of three Josephson qubits in the presence of bosonic baths
Samuele SpillaAnna NapoliM. ScalaRosanna Miglioresubject
Quantum decoherencequantum statistical methodFOS: Physical sciencesQuantum entanglement01 natural sciences010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)quantum fluctuations quantum noise quantum jumpQuantum nonlocalityOpen quantum systemQuantum mechanics0103 physical sciencesMaster equationdecoherence010306 general physicsSuperconductivityPhysicsQuantum PhysicsCondensed Matter - Superconductivityquantum nonlocalityQuantum PhysicsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsGreenberger–Horne–Zeilinger stateQubitopen systemQuantum Physics (quant-ph)entanglementquantum state engineering and measurementdescription
We analyze an entangling protocol to generate tripartite Greenberger-Horne-Zeilinger states in a system consisting of three superconducting qubits with pairwise coupling. The dynamics of the open quantum system is investigated by taking into account the interaction of each qubit with an independent bosonic bath with an ohmic spectral structure. To this end a microscopic master equation is constructed and exactly solved. We find that the protocol here discussed is stable against decoherence and dissipation due to the presence of the external baths.
year | journal | country | edition | language |
---|---|---|---|---|
2013-10-21 | Journal of Physics B: Atomic, Molecular and Optical Physics |