0000000000009477

AUTHOR

Rosanna Migliore

showing 26 related works from this author

GENERATION OF ENTANGLED STATES OF TWO DISTANT CAVITY MODES VIA JOSEPHSON JUNCTION BASED DEVICES

2007

We present a simple scheme for the preparation of entangled states of the e.m. modes of two spatially separated microwave cavities exploiting their interaction with two superconducting SQUID rings embedded within them. The scheme requires that the two SQUID qubits are initially prepared in an entangled state and the possibility of controlling both the coupling strengths and the interaction times. We also briefly discuss the importance of such a theoretical scheme in view of possible applications in the context of quantum computing and its experimental feasibility.

PhysicsJosephson effectPhysics and Astronomy (miscellaneous)Context (language use)Quantum entanglementJosephson junction-based devicequantum computinglaw.inventionSQUIDlawQuantum mechanicsQubitSuperconducting tunnel junctionW stateentanglementQuantum computerInternational Journal of Quantum Information
researchProduct

A modeling study suggesting how a reduction in the context-dependent input on CA1 pyramidal neurons could generate schizophrenic behavior.

2011

The neural mechanisms underlying schizophrenic behavior are unknown and very difficult to investigate experimentally, although a few experimental and modeling studies suggested possible causes for some of the typical psychotic symptoms related to this disease. The brain region most involved in these processes seems to be the hippocampus, because of its critical role in establishing memories for objects or events in the context in which they occur. In particular, a hypofunction of the N-methyl-D-aspartate (NMDA) component of the synaptic input on the distal dendrites of CA1 pyramidal neurons has been suggested to play an important role for the emergence of schizophrenic behavior. Modeling st…

Computer scienceCognitive Neurosciencemedia_common.quotation_subjectSchizophrenia Realistic model CA1 Hippocampus Object recognition Synaptic integrationCentral nervous systemModels NeurologicalCa1 neuronHippocampusHippocampal formationSynapse03 medical and health sciences0302 clinical medicineArtificial IntelligencePerceptionmedicineAnimalsHumansInvariant (mathematics)CA1 Region Hippocampal030304 developmental biologymedia_common0303 health sciencesRecallArtificial neural networkPyramidal NeuronSynaptic integrationPyramidal CellsCognitive neuroscience of visual object recognitionDendritesmedicine.diseasemedicine.anatomical_structurenervous systemSchizophreniaSynapsesSchizophreniaNMDA receptorNeuronNerve NetNeuroscience030217 neurology & neurosurgeryNeural networks : the official journal of the International Neural Network Society
researchProduct

ELECTROMAGNETIC CONTROL OF DYNAMICAL LOCALIZATION CONDITIONS IN 1D LATTICES WITH LONG-RANGE INTERSITE INTERACTIONS

2009

In this paper we investigate the possibility of controlling dynamical localization conditions for a charged particle confined in a 1D lattice biased with a dc-bichromatic field and long-range intersite interactions. We derive the quasi-energy spectrum of the system proving that the tunneling dynamics of the particle can be destroyed provided that the parameters of the external irradiating electric field are properly chosen.

PhysicsPhysics and Astronomy (miscellaneous)Condensed matter physicsQuantum electrodynamicsElectric fieldLattice (order)Quantum controlCharged particleQuantum tunnellingInternational Journal of Quantum Information
researchProduct

Electromagnetically induced tunnelling suppression in a flux qubit

2003

Motivated by recent experiments wherein Josephson devices are irradiated by microwaves fields or are coupled to LC resonators, we theoretically investigate the dynamics of a flux qubit coupled to a monochromatic bosonic mode. We define strong coupling conditions under which the qubit tunnelling frequency between the localized flux states can be controlled and even suppressed. The practical realization of such a regime leading to this hindered dynamics is discussed.

Josephson effectPhysicsPhase qubitFlux qubitTunnel effectResonatorCharge qubitCondensed matter physicsQubitCondensed Matter PhysicsQuantum tunnellingElectronic Optical and Magnetic MaterialsThe European Physical Journal B - Condensed Matter
researchProduct

Quantum superpositions of clockwise and counterclockwise supercurrent states in the dynamics of a rf-SQUID exposed to a quantized electromagnetic fie…

2002

The dynamical behavior of a superconducting quantum interference device (a rf-SQUID) irradiated by a single mode quantized electromagnetic field is theoretically investigated. Treating the SQUID as a flux qubit, we analyze the dynamics of the combined system within the low lying energy Hilbert subspace both in the asymmetric and in the symmetric SQUID potential configurations. We show that the temporal evolution of the system is dominated by an oscillatory behavior characterized by more than one, generally speaking, incommensurable Rabi frequencies whose expressions are explicitly given. We find that the external parameters may fixed in such a way to realize a control on the dynamical repla…

Electromagnetic fieldPhysicsFlux qubitSupercurrentCondensed Matter (cond-mat)FOS: Physical sciencesQuantum entanglementCondensed Matterlaw.inventionLoop (topology)SQUIDlawQuantum mechanicsQuantumQuantum computer
researchProduct

GHZ state generation of three Josephson qubits in the presence of bosonic baths

2013

We analyze an entangling protocol to generate tripartite Greenberger-Horne-Zeilinger states in a system consisting of three superconducting qubits with pairwise coupling. The dynamics of the open quantum system is investigated by taking into account the interaction of each qubit with an independent bosonic bath with an ohmic spectral structure. To this end a microscopic master equation is constructed and exactly solved. We find that the protocol here discussed is stable against decoherence and dissipation due to the presence of the external baths.

Quantum decoherencequantum statistical methodFOS: Physical sciencesQuantum entanglement01 natural sciences010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)quantum fluctuations quantum noise quantum jumpQuantum nonlocalityOpen quantum systemQuantum mechanics0103 physical sciencesMaster equationdecoherence010306 general physicsSuperconductivityPhysicsQuantum PhysicsCondensed Matter - Superconductivityquantum nonlocalityQuantum PhysicsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsGreenberger–Horne–Zeilinger stateQubitopen systemQuantum Physics (quant-ph)entanglementquantum state engineering and measurementJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

On the validity of non-Markovian master equation approaches for the entanglement dynamics of two-qubit systems

2010

In the framework of the dissipative dynamics of coupled qubits interacting with independent reservoirs, a comparison between non-Markovian master equation techniques and an exact solution is presented here. We study various regimes in order to find the limits of validity of the Nakajima–Zwanzig and the time-convolutionless master equations in the description of the entanglement dynamics. A comparison between the performances of the concurrence and the negativity as entanglement measures for the system under study is also presented.

Entanglement Open quantum systems Non-Markovian master equationsDynamics (mechanics)Markov processConcurrenceQuantum PhysicsQuantum entanglementCondensed Matter PhysicsAtomic and Molecular Physics and Opticssymbols.namesakeExact solutions in general relativityClassical mechanicsQubitMaster equationsymbolsStatistical physicsDissipative dynamicsMathematical PhysicsMathematicsPhysica Scripta
researchProduct

Entanglement of distant superconducting quantum interference device rings

2005

We consider two distant mesoscopic SQUID rings, approximated with two-level systems, interacting with two-mode microwaves. The Hamiltonian of the system is used to calculate its time evolution. The cases with microwaves which at t = 0 are in separable states (classically correlated) or entangled states (quantum mechanically correlated) are studied. It is shown that the Josephson currents in the two SQUID rings are also correlated.

Quantum opticsPhysicsMesoscopic physicsPhysics and Astronomy (miscellaneous)Condensed matter physicsTime evolutionQuantum entanglementAtomic and Molecular Physics and Opticslaw.inventionSQUIDSeparable statelawCondensed Matter::SuperconductivityQuantum mechanicsQuantum informationQuantumJournal of Optics B: Quantum and Semiclassical Optics
researchProduct

Non-Markovian dissipative dynamics of two coupled qubits in independent reservoirs: a comparison between exact solutions and master equation approach…

2009

The reduced dynamics of two interacting qubits coupled to two independent bosonic baths is investigated. The one-excitation dynamics is derived and compared with that based on the resolution of appropriate non-Markovian master equations. The Nakajima-Zwanzig and the time-convolutionless projection operator techniques are exploited to provide a description of the non-Markovian features of the dynamics of the two-qubits system. The validity of such approximate methods and their range of validity in correspondence to different choices of the parameters describing the system are brought to light.

PhysicsQuantum PhysicsQuantum decoherenceMarkov processFOS: Physical sciencesAtomic and Molecular Physics and OpticsOpen quantum systemRange (mathematics)symbols.namesakeClassical mechanicsQubitMaster equationsymbolsopen quantum system master equation techniquesStatistical physicsQuantum Physics (quant-ph)BosonQuantum computer
researchProduct

Step-by-Step Control of the Dynamics of a Superconducting QED-like System

2007

We discuss the modus operandi of a theoretical scalable coupling scheme to control step by step the time evolution of a pair of flux qubits embedded in a lossy resonant cavity. The sequential interaction of each qubit with the quantized cavity mode is controlled by externally applied magnetic fluxes. Our analysis indicates that indirect qubit-qubit interactions, with the electromagnetic mode acting as a data bus, can be selectively performed and exploited both for the implementation of entangling gates and for the generation of states with a priori known characteristics.

Statistics and ProbabilityCouplingPhysicsSuperconductivityFlux qubitComplex systemTime evolutionStatistical and Nonlinear PhysicsData_CODINGANDINFORMATIONTHEORYQuantum PhysicsLossy compressioncoupling schemeTopologyComputer Science::Emerging TechnologiesControl theoryQubitHardware_ARITHMETICANDLOGICSTRUCTURESMathematical PhysicsSystem busOpen Systems & Information Dynamics
researchProduct

Dissipation and entanglement dynamics for two interacting qubits coupled to independent reservoirs

2008

We derive the master equation of a system of two coupled qubits by taking into account their interaction with two independent bosonic baths. Important features of the dynamics are brought to light, such as the structure of the stationary state at general temperatures and the behaviour of the entanglement at zero temperature, showing the phenomena of sudden death and sudden birth as well as the presence of stationary entanglement for long times. The model here presented is quite versatile and can be of interest in the study of both Josephson junction architectures and cavity-QED.

Statistics and ProbabilityJosephson effectPhysicsQuantum PhysicsStructure (category theory)FOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsQuantum entanglementDissipationSudden deathdissipazioneteoria dei sistemi quantistici apertiModeling and SimulationQuantum mechanicsQubitMaster equationQuantum Physics (quant-ph)entanglementMathematical PhysicsStationary state
researchProduct

Single and two-qubit dynamics in circuit QED architectures

2008

In this paper we overview our researches on the generation and the control of entangled states in the framework of circuit quantum electrodynamics. Applications in the context of quantum computing and quantum information theory are discussed.

PhysicsQuantum networkTheoryofComputation_GENERALGeneral Physics and AstronomyOne-way quantum computerQuantum technologyOpen quantum systemTheoretical physicsCircuit quantum electrodynamicsComputerSystemsOrganization_MISCELLANEOUSQuantum mechanicsQubitCircuit quantum electrodynamics squids quantum computing entanglementGeneral Materials SciencePhysical and Theoretical ChemistryQuantum informationQuantum computerThe European Physical Journal Special Topics
researchProduct

Master equations for two qubits coupled via a nonlinear mode

2013

A microscopic master equation describing the dynamics of two qubits coupled via a nonlinear mediator is constructed supposing that the two qubits, as well as the nonlinear mode, interact, each with its own independent bosonic bath. Generally speaking the master equation derived in this way represents a more appropriate tool for studying the dynamics of open quantum systems. Indeed we show that it is more complex than the phenomenological master equation, constructed simply adding ad hoc dissipative terms.

PhysicsQuantum decoherenceGeneral MathematicsGeneral EngineeringQuantum entanglementDissipationOpen quantum systems Master equations Dissipation Decoherence EntanglementSettore FIS/03 - Fisica Della MateriaNonlinear systemClassical mechanicsQubitMaster equationDissipative systemQuantumJournal of Engineering Mathematics
researchProduct

Resonant effects in a SQUID qubit subjected to nonadiabatic changes

2013

By quickly modifying the shape of the effective potential of a double SQUID flux qubit from a single-well to a double-well condition, we experimentally observe an anomalous behavior, namely an alternance of resonance peaks, in the probability to find the qubit in a given flux state. The occurrence of Landau-Zener transitions as well as resonant tunneling between degenerate levels in the two wells may be invoked to partially justify the experimental results. A quantum simulation of the time evolution of the system indeed suggests that the observed anomalous behavior can be imputable to quantum coherence effects. The interplay among all these mechanisms has a practical implication for quantum…

PhysicsQuantum PhysicsFlux qubitCharge qubitCondensed Matter - SuperconductivityTime evolutionSuperconducting devices; SQUID qubit; Landau-Zener transitions; resonant tunneling.Quantum simulatorFOS: Physical sciencesSQUID qubitresonant tunneling.Condensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElectronic Optical and Magnetic MaterialsPhase qubitSuperconductivity (cond-mat.supr-con)Quantum mechanicsQubitqubit; supeconductvity; squidQuantum Physics (quant-ph)Landau-Zener transitionQuantumSuperconducting deviceQuantum computer
researchProduct

Dissipative effects on a generation scheme of a W state in an array of coupled Josephson junctions

2011

The dynamics of an open quantum system, consisting of three superconducting qubits interacting with independent reservoirs, is investigated to elucidate the effects of the environment on a unitary generation scheme of W states (Migliore R et al 2006 Phys. Rev. B 74 104503). To this end a microscopic master equation is constructed and its exact resolution predicts the generation of a Werner-like state instead of the W state. A comparison between our model and a more intuitive phenomenological model is also considered, in order to find the limits of the latter approach in the case of structured reservoirs.

PhysicsJosephson effectOpen quantum systemQuantum mechanicsQubitPhenomenological modelMaster equationDissipative systemW stateCondensed Matter PhysicsUnitary stateAtomic and Molecular Physics and Optics
researchProduct

Freezing the dynamics of a rf SQUID qubit via its strong coupling to a quantized microwave field

2004

In this paper we show the results concerning the study of the dynamics of a rf SQUID qubit exposed to a quantized monochromatic microwave source in the strong coupling limit. We bring out more details of the possibility both of controlling and hindering the oscillations between the two qubit flux states when we consider opportunely prepared initial field states. The importance of conceiving of such kinds of theoretical schemes in view of possible applications in the context of quantum computing is briefly discussed.

PhysicsFlux qubitCharge qubitPhysics and Astronomy (miscellaneous)Quantum computers Quantum optics flux qubitsAtomic and Molecular Physics and OpticsPhase qubitsymbols.namesakeQuantum mechanicsQubitsymbolsQuantum informationHamiltonian (quantum mechanics)MicrowaveQuantum computerJournal of Optics B: Quantum and Semiclassical Optics
researchProduct

Time Evolution of two distant SQUID rings irradiated with entangled electromagnetic field

2006

Two distant mesoscopic SQUID rings are irradiated with two mode microwaves produced by the same source. The time evolution of the system is studied. The two microwave modes are correlated. It is shown that the currents tunnelling through the Josephson junctions in the distant rings, are also correlated.

Josephson effectElectromagnetic fieldPhysicsMesoscopic physicsCondensed matter physicsTime evolutionAstrophysics::Cosmology and Extragalactic AstrophysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMolecular physicslaw.inventionSQUIDlawCondensed Matter::SuperconductivityIrradiationMicrowaveQuantum tunnelling
researchProduct

Maximally entangled states of two flux qubits in a microwave cavity

2005

PhysicsFlux qubitQuantum decoherenceQubitQuantum mechanicsW stateCondensed Matter PhysicsSuperconducting quantum computingEntanglement distillationElectronic Optical and Magnetic MaterialsMicrowave cavityQuantum computerPhysical Review B
researchProduct

Diffusion and transfer of entanglement in an array of inductively coupled flux qubits

2007

A theoretical scheme to generate multipartite entangled states in a Josephson planar-designed architecture is reported. This scheme improves the one published in [Phys. Rev. B 74, 104503 (2006)] since it speeds up the generation of W entangled states in an MxN array of inductively coupled Josephson flux qubits by reducing the number of necessary steps. In addition, the same protocol is shown to be able to transfer the W state from one row to the other.

PhysicsQuantum opticsQuantum PhysicsFlux qubitCondensed Matter - SuperconductivityCluster stateflux qubitsQuantum computersFOS: Physical sciencesQuantum PhysicsQuantum entanglementCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)Condensed Matter - Other Condensed MatterMultipartiteQuantum mechanicsDiffusion (business)W stateAtomic physicsQuantum Physics (quant-ph)Superconducting quantum computingOther Condensed Matter (cond-mat.other)Quantum computerPhysical Review B
researchProduct

Resetting of a planar superconducting quantum memory

2009

We consider and analyze a scheme for the reset of a M × N planar array of inductively coupled Josephson flux qubits. We prove that it is possible to minimize the resetting time of an arbitrary chosen row of qubits by properly switching on and off the coupling between pairs of qubits belonging to the same column. In addition, the analysis of the time evolution of the array allows us to single out the class of generalized W states which can be successfully reset.

PhysicsFlux qubitSquidsPlanar arrayTime evolutionJosephson deviceQuantum PhysicsQuantum entanglementSettore FIS/03 - Fisica Della MateriaComputer Science::Emerging TechnologiesQuantum mechanicsQubitQuantum computationSuperconducting quantum computingReset (computing)Computer Science::Formal Languages and Automata TheoryQuantum computerEntanglement production and manipulation
researchProduct

Robust stationary entanglement of two coupled qubits in independent environments

2009

The dissipative dynamics of two interacting qubits coupled to independent reservoirs at nonzero temperatures is investigated, paying special attention to the entanglement evolution. The counter-rotating terms in the qubit-qubit interaction give rise to stationary entanglement, traceable back to the ground state structure. The robustness of this entanglement against thermal noise is thoroughly analyzed, establishing that it can be detected at reasonable experimental temperatures. Some effects linked to a possible reservoir asymmetry are brought to light.

PhysicsQuantum Physicsmedia_common.quotation_subjectStructure (category theory)FOS: Physical sciencesQuantum entanglementQuantum PhysicsAsymmetryAtomic and Molecular Physics and OpticsRobustness (computer science)QubitStatistical physicsGround stateDissipative dynamicsQuantum Physics (quant-ph)decoerenza dissipazione entanglementmedia_common
researchProduct

Generation of multipartite entangled states in Josephson architectures

2006

We propose and analyze a scheme for the generation of multipartite entangled states in a system of inductively coupled Josephson flux qubits. The qubits have fixed eigenfrequencies during the whole process in order to minimize decoherence effects and their inductive coupling can be turned on and off at will by tuning an external control flux. Within this framework, we will show that a W state in a system of three or more qubits can be generated by exploiting the sequential one by one coupling of the qubits with one of them playing the role of an entanglement mediator.

PhysicsQuantum computers Quantum optics flux qubitsQuantum PhysicsBell stateFlux qubitCondensed Matter - SuperconductivityCluster stateFOS: Physical sciencesWIGNER-FUNCTIONQuantum entanglementQuantum PhysicsQUANTUM-STATECondensed Matter PhysicsCOMPUTATIONElectronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)MultipartiteComputer Science::Emerging TechnologiesQuantum mechanicsTOMOGRAPHYW stateQuantum Physics (quant-ph)Superconducting quantum computingEntanglement distillationCHARGE QUBITS
researchProduct

Entangling two uncoupled flux qubits via their sequential interaction with a quantized electromagnetic field

2005

A theoretical scheme for the generation of maximally entangled states of two superconducting flux qubits via their sequential interaction with a monochromatic quantum field is presented. The coupling of the qubits with the quantized field can be tuned on and off resonance by modulating the effective Josephson energy of each qubit via an externally applied magnetic flux. The system operates in such a way as to transfer the entanglement from a bipartite field-qubit subsystem to the two qubits. This scheme is attractive in view of the implementation of practical quantum processing systems.

PhysicsBell stateFlux qubitCluster stateQuantum PhysicsQuantum entanglementAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsComputer Science::Emerging TechnologiesQuantum mechanicsQuantum electrodynamicsQubitW stateSuperconducting quantum computingEntanglement distillation
researchProduct

Nonclassical correlations in superconducting circuits

2009

A key step on the road map to solid-state quantum information processing (and to a deeper understanding of many counterintuitive aspects of quantum mechanics) is the generation and manipulation of nonclassical correlations between different quantum systems. Within this framework, we analyze the possibility of generating maximally entangled states in a system of two superconducting flux qubits, as well as the effect of their own environments on the entanglement dynamics. The analysis reported here confirms that the phenomena of sudden birth and sudden death of the entanglement do not depend on the particular measure of the entanglement adopted.

PhysicsQuantum discordQuantum mechanicsQuantum PhysicsQuantum entanglementNonclassical lightW stateQuantum informationCondensed Matter PhysicsSquashed entanglementMultipartite entanglementSudden deathElectronic Optical and Magnetic Materialsphysica status solidi (b)
researchProduct

Analytical and numerical analysis of the atom–field dynamics in non-stationary cavity QED

2011

We study analytically and numerically the dynamics of the quantum non-stationary system composed of a two-level atom interacting with a single mode cavity field whose frequency is rapidly modulated in time (with a small amplitude). We identify modulation laws resulting in qualitatively different dynamical regimes and we present analytical solutions in some simple cases. In particular, we analyse minutely the influence of the field–atom coupling on the photon generation from vacuum via the dynamical Casimir effect.

PhysicsCasimir effectCoupling (physics)AmplitudeClassical mechanicsPhotonField (physics)Quantum electrodynamicsAtomQuantum field theoryCondensed Matter PhysicsQuantumAtomic and Molecular Physics and OpticsJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

JOSEPHSON MESOJUNCTIONS AS DETECTORS OF LOW-INTENSITY QUANTIZED COHERENT FAR-INFRARED FIELDS

2000

We show that the quantum nature of a mesoscopic Josephson junction may be exploited for detecting low-intensity electromagnetic quantized fields. In particular we prove that intensity and phase of single-mode quantized coherent field may be reconstructed measuring amplitude and quantum noise of the first quantum Shapiro step occurring in the I-V characteristic of the ultrasmall Josephson junction.

Josephson effectPhysicsMesoscopic physicsCondensed matter physicsQuantum noiseStatistical and Nonlinear PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter Physicslaw.inventionPi Josephson junctionSQUIDFar infraredlawCondensed Matter::SuperconductivityQuantum mechanicsSuperconducting tunnel junctionQuantumInternational Journal of Modern Physics B
researchProduct