6533b7cffe1ef96bd1258ed7
RESEARCH PRODUCT
A modeling study suggesting how a reduction in the context-dependent input on CA1 pyramidal neurons could generate schizophrenic behavior.
Rosanna MiglioreDomenico TegoloMichele MiglioreIgnazio De Blasisubject
Computer scienceCognitive Neurosciencemedia_common.quotation_subjectSchizophrenia Realistic model CA1 Hippocampus Object recognition Synaptic integrationCentral nervous systemModels NeurologicalCa1 neuronHippocampusHippocampal formationSynapse03 medical and health sciences0302 clinical medicineArtificial IntelligencePerceptionmedicineAnimalsHumansInvariant (mathematics)CA1 Region Hippocampal030304 developmental biologymedia_common0303 health sciencesRecallArtificial neural networkPyramidal NeuronSynaptic integrationPyramidal CellsCognitive neuroscience of visual object recognitionDendritesmedicine.diseasemedicine.anatomical_structurenervous systemSchizophreniaSynapsesSchizophreniaNMDA receptorNeuronNerve NetNeuroscience030217 neurology & neurosurgerydescription
The neural mechanisms underlying schizophrenic behavior are unknown and very difficult to investigate experimentally, although a few experimental and modeling studies suggested possible causes for some of the typical psychotic symptoms related to this disease. The brain region most involved in these processes seems to be the hippocampus, because of its critical role in establishing memories for objects or events in the context in which they occur. In particular, a hypofunction of the N-methyl-D-aspartate (NMDA) component of the synaptic input on the distal dendrites of CA1 pyramidal neurons has been suggested to play an important role for the emergence of schizophrenic behavior. Modeling studies have investigated this issue at the network and cellular level. Here, starting from the experimentally supported assumption that hippocampal neurons are very specific, sparse, and invariant in their firing, we explore an experimentally testable prediction at the single neuron level. The model shows how and to what extent a pathological hypofunction of a context-dependent distal input on a CA1 neuron can generate hallucinations by altering the normal recall of objects on which the neuron has been previously tuned. The results suggest that a change in the context during the recall phase may cause an occasional but very significant change in the set of active dendrites used for feature recognition, leading to a distorted perception of objects.
year | journal | country | edition | language |
---|---|---|---|---|
2011-08-01 | Neural networks : the official journal of the International Neural Network Society |