6533b7d6fe1ef96bd1265b1b
RESEARCH PRODUCT
High Thermoelectric Power Factor Organic Thin Films through Combination of Nanotube Multilayer Assembly and Electrochemical Polymerization
Andrés CantareroRyan J. SmithMario CulebrasYixuan SongMichelle KreckerClara M. GómezChungyeon ChoJaime C. Grunlansubject
NanotubeWorking electrodeNanocompositeMaterials science02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesLead telluridechemistry.chemical_compoundchemistryPEDOT:PSSPolymerizationSeebeck coefficientThermoelectric effectGeneral Materials ScienceComposite material0210 nano-technologydescription
In an effort to produce effective thermoelectric nanocomposites with multiwalled carbon nanotubes (MWCNT), layer-by-layer assembly was combined with electrochemical polymerization to create synergy that would produce a high power factor. Nanolayers of MWCNT stabilized with poly(diallyldimethylammonium chloride) or sodium deoxycholate were alternately deposited from water. Poly(3,4-ethylene dioxythiophene) [PEDOT] was then synthesized electrochemically by using this MWCNT-based multilayer thin film as the working electrode. Microscopic images show a homogeneous distribution of PEDOT around the MWCNT. The electrical resistance, conductivity (σ) and Seebeck coefficient (S) were measured before and after the PEDOT polymerization. A 30 bilayer MWCNT film (<1 μm thick) infused with PEDOT is shown to achieve a power factor (PF = S2σ) of 155 μW/m K2, which is the highest value ever reported for a completely organic MWCNT-based material and competitive with lead telluride at room temperature. The ability of this M...
year | journal | country | edition | language |
---|---|---|---|---|
2017-02-09 | ACS Applied Materials & Interfaces |