0000000000200034

AUTHOR

Mario Culebras

Monitoring molecular dynamics of bacterial cellulose composites reinforced with graphene oxide by carboxymethyl cellulose addition

[EN] Broadband Dielectric Relaxation Spectroscopy was performed to study the molecular dynamics of dried Bacterial Cellulose/Carboxymethyl Cellulose-Graphene Oxide (BC/CMC-GO) composites as a function of the concentration of CMC in the culture media. At low temperature the dielectric spectra are dominated by a dipolar process labelled as a beta -relaxation, whereas electrode polarization and the contribution of dc-conductivity dominate the spectra at high temperatures and low frequency. The CMC concentration affects the morphological structure of cellulose and subsequently alters its physical properties. X-ray diffractometry measurements show that increasing the concentration of CMC promote…

research product

Thermosetting composites based on bronze particles for archaeological and artistic metal heritage cloning

peer-reviewed Artificial Metals are polymeric semi-metallic composites obtained by combining thermosetting resins with atomized metal powders in order to achieve composite materials capable of reproducing metals, even in a rusty or corroded condition. These composites provide a solution for the reproduction of archaeological artefacts, sculptures, and ornaments for the purpose of conservation. This work explores mechanical properties of three different resins bronze composites loaded with two different proportions of metal filler. The degree of conversion of the samples was measured by differential scanning calorimetry (DSC) and flexural tests were carried out to determine their mechanical …

research product

High Thermoelectric Power Factor Organic Thin Films through Combination of Nanotube Multilayer Assembly and Electrochemical Polymerization

In an effort to produce effective thermoelectric nanocomposites with multiwalled carbon nanotubes (MWCNT), layer-by-layer assembly was combined with electrochemical polymerization to create synergy that would produce a high power factor. Nanolayers of MWCNT stabilized with poly(diallyldimethylammonium chloride) or sodium deoxycholate were alternately deposited from water. Poly(3,4-ethylene dioxythiophene) [PEDOT] was then synthesized electrochemically by using this MWCNT-based multilayer thin film as the working electrode. Microscopic images show a homogeneous distribution of PEDOT around the MWCNT. The electrical resistance, conductivity (σ) and Seebeck coefficient (S) were measured before…

research product

Controlling dielectrical properties of polymer blends through defined PEDOT nanostructures

[EN] The paper reports the crucial role of the morphology of poly(3,4-ethylenedioxythiophene) (PEDOT) nanostructures on the thermal and dielectric properties of polymer blends prepared thereof. PEDOT nanostructures with two different morphologies (nanoparticles and nanowires) were synthesized. The size for the nanoparticles was in the range 10 40 nm and the diameter of the nanowires was of ca. 200 nm. These nanostructures were blended with an insulating polymer matrix, poly(methyl methacrylate) (PMMA), to evaluate the dielectrical properties of the materials. The results of broadband dielèctric spectroscopy showed a strong correlation between the morphology of the nanostructure and the impr…

research product

Molecular dynamics of carrageenan composites reinforced with Cloisite Na+ montmorillonite nanoclay

[EN] Nanocomposites comprising biodegradable carrageenan and glycerol(KCg) as the host polymer, with different contents of natural montmorillonite (MMT) as filler, were prepared by a solution casting process. Different techniques have been used to determine the interaction/behavior among the different components of the samples such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission electron microscope (TEM) and, mainly, Dielectric relaxation spectroscopy (DRS). FTIR indicates hydrogen interaction between carrageenan matrix and silicate that is confirmed by the XRD data indicating some kind of carrageenan intercalation between the MMT layers. A rather ho…

research product

An experimental study of dynamic behaviour of graphite polycarbonatediol polyurethane composites for protective coatings

Segmented polycarbonatediol polyurethane (PUPH) has been synthesized and modified with different amounts of graphite conductive filler (from 0 to 50 wt%). Thermal and dynamical thermal analysis of the composites clearly indicates changes in the polyurethane relaxations upon addition of graphite. Broadband dielectric spectroscopy has been used to study the dielectric properties of the (PUPH) and one composite in the frequency range from 10−2 to 107 Hz and in the temperature window of −140 to 170 ◦C. Relaxation processes associated with different molecular motions and conductivity phenomena (Maxwell–Wagner–Sillars and electrode polarization) are discussed and related to the graphite content

research product

Lignin for energy applications – state of the art, life cycle, technoeconomic analysis and future trends

Lignin in advanced energy applications: source, extraction methodolgy, structure/property relationships.

research product

Controlling the thermoelectric properties of polymers: application to PEDOT and polypyrrole

Poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy) films have been prepared by an electrochemical method in a three electrode cell. The films have been obtained at different oxidation levels regarded as bipolaron, polaron and neutral states by varying the voltage, as is usually done in conjugated heterocyclic polymers. The voltage (-0.2V1.0 V) has been applied versus a Ag/AgCl reference electrode, producing a variation of one order of magnitude in the electrical conductivity and the Seebeck coefficient of the films. In the voltage range explored, the electrical conductivity increases from 80 to 766 S cm(-1) in PEDOT and from 15 to 160 S cm(-1) in PPy, while the Seebeck coefficie…

research product

Stable n-type thermoelectric multilayer thin films with high power factor from carbonaceous nanofillers

Abstract High power factor n-type organic thermoelectric nanocomposites are assembled by alternately depositing double walled-nanotubes (DWNT), stabilized by polyethyleneimine (PEI), and graphene stabilized by polyvinylpyrrolidone (PVP), from water using the layer-by-layer (LbL) assembly technique. This unique combination of carbon nanomaterials exhibits an electrical conductivity of 300 S cm−1 and a relatively stable power factor of 190 μW m−1 K−2 at room temperature.

research product

Electrochemical Synthesis of Hybrid Layered Thermoelectric Materials Based on PEDOT/SnS Doped with Ag

research product

Rheological study of gel phenomena during epoxide network formation in the presence of sepiolite

The dynamic behaviour during the crosslinking of an epoxy polymer near the gel point was monitored using rheological multiple frequency experiments. The influence of a needle-shaped inorganic nanofiller, sepiolite, either non-modified or organically surface modified during the cure process in the presence of an aliphatic and an aromatic hardener was investigated. The validity of various criteria for determining the gel point was examined for the crosslinking of these filled thermosets. The Winter–Chambon criterion at the gel point is obeyed by the unfilled and by the non-modified sepiolite-filled epoxy matrix with either of the two hardeners. However, physical gels are formed in the presenc…

research product

Review on Polymers for Thermoelectric Applications.

In this review, we report the state-of-the-art of polymers in thermoelectricity. Classically, a number of inorganic compounds have been considered as the best thermoelectric materials. Since the prediction of the improvement of the figure of merit by means of electronic confinement in 1993, it has been improved by a factor of 3-4. In the mean time, organic materials, in particular intrinsically conducting polymers, had been considered as competitors of classical thermoelectrics, since their figure of merit has been improved several orders of magnitude in the last few years. We review here the evolution of the figure of merit or the power factor during the last years, and the best candidates…

research product

Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction

This work reports on the synthesis of the intrinsically conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with several counter-ions, ClO4, PF6 and bis(trifluoromethylsulfonyl)imide (BTFMSI), by electro-polymerization and its thermoelectric properties. We show that, depending on the counter-ion size, the thermoelectric efficiency of PEDOT can be increased up to two orders of magnitude. A further chemical reduction with hydrazine optimizes the power factor (PF). By changing the counter-ions, we were able to increase the electrical conductivity (σ) of PEDOT by a factor of three, while the Seebeck coefficient remains at the same order of magnitude in the three polymers. The best…

research product

Electrical conductivity properties of expanded graphite-polycarbonatediol polyurethane composites

Conductive polymer composites of segmented polycarbonatediol polyurethane and expanded graphite (EG) have been synthesized with different amounts of EG conductive filler (from 0 to 50 wt%). SEM, X-ray diffraction measurements, Fourier transform infrared and Raman spectroscopies demonstrated a homogeneous dispersion of the EG filler in the matrix. The dielectric permittivity of the composites showed an insulator to conductor percolation transition with increase in EG content. Significant changes in the dielectric permittivity take place when the weight fraction of EG is in the range 20–30 wt%. Special attention has been paid to the dependence of the conductivity on frequency, temperature and…

research product

Poly(3,4-Ethylenedioxythiophene) nanoparticles as building blocks for hybrid thermoelectric flexible films

Hybrid thermoelectric flexible films based on poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles and carbon nanotubes were prepared by using layer-by-layer (LbL) assembly. The employed PEDOT nanoparticles were synthesized by oxidative miniemulsion polymerization by using iron(III) p-toluenesulfonate hexahydrate (FeTos) as an oxidant and poly(diallyldimethylammonium chloride) (PDADMAC) as stabilizer. Sodium deoxycholate (DOC) was used as a stabilizer to prepare the aqueous dispersions of the carbon nanotubes. Hybrid thermoelectric films were finally prepared with different monomer/oxidant molar ratios and different types of carbon nanotubes, aiming to maximize the power factor (PF). The …

research product

Three dimensional PEDOT nanowires network

Abstract A three dimensional (3D) structure of poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires have been prepared by electrochemical polymerization using 3D-alumina templates. The templates were synthesized by pulse anodization in an electrochemical bath. A 3D free standing network has been obtained after the template removal. The morphological analysis by electron microscopy shows the existence of a 3D PEDOT nanowires network whose nanowire diameter is around 20 nm for the vertical nanowires and 10 nm for the transversal connections. Electrical properties such as the I–V characteristics and the Seebeck coefficient were studied for the nanowires network. Also, the optical properties have…

research product

An Approach on the Hydrogen Absorption in Carbon Black after Gamma Irradiation

In this work, different samples of an industrial carbon black are used to study the hydrogen intake from an over pres-surized atmosphere and its changes due to alteration of its level of crystallinity produced by ¿-irradiation. The monitor-ing of the hydrogen adsorption was made by means of thermogravimetric analysis and by measurements of some elec-trical parameters as the Seebeck coefficient. X-ray diffraction shows that the irradiation diminishes the level of crystal-line perfection. These results show interesting possibilities to use carbon black as cheap hydrogen absorbers.

research product

PEDOT thin films with n-type thermopower

peer-reviewed Synthesis of n-type organic semiconductors is challenging as reduced states are difficult to obtain due to their instability in air. Here, we report tailoring of semiconducting behavior through control of surfactant concentration during synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles. Nanoparticles were synthesized by mini-emulsion polymerization, where stable suspensions were used to produce polymer films by a simple casting technique on polyethylene terephthalate (PET) substrates. Electrical conductivity and Seebeck coefficients were measured as a function of surfactant concentration. It was found that conductivity decreases three orders of magnitude as s…

research product

Thermal sensor based on a polymer nanofilm

In this work, we have developed a thermal sensor based on poly(3,4 ethylenedioxythiophene) (PEDOT) nanofilms as thermoelectric material. The PEDOT nanofilms have been synthesized by the electrochemical polymerization method. The thicknesses of the films were around 120 nm. The doping level of PEDOT was controlled by chemical reduction using hydrazine. The achieved Seebeck coeficient is 40 uV/K. A PEDOT nanofilm was integrated into an electronic circuit that amplifies the voltage originated from the Seebeck effect. The temperature increment produced by a fingerprint touching the film is enough to switch on a light emitting diode. Peer Reviewed

research product

Hybrids composites of NCCO/PEDOT for thermoelectric applications

Abstract Organic materials are becoming a realistic roadway to fabricate efficient thermoelectric devices using environmental friendly materials. Such requirements are actually fulfilled by thermoelectric generators operating by conducting polymers, but also by hybrid materials. The combination of organic + inorganic compounds may exhibit a high electrical conductivity and Seebeck coefficient as well as lower thermal conductivity in order to efficiently generate thermoelectric power. In these hybrid compounds, perovskite-type oxides are a suitable election for the inorganic part since they have a high Seebeck coefficient although their electrical conductivity is usually low. Blending them w…

research product

In Situ Synthesis of Polythiophene and Silver Nanoparticles within a PMMA Matrix: A Nanocomposite Approach to Thermoelectrics

The processability of organic thermoelectric materials plays a crucial role due to their clear advantages of applicability in large-scale areas compared to traditional inorganic counterparts. A promising way to process thermoelectric materials based on conductive polymers is through in situ polymerization in an insulating polymer matrix. This work shows an interpenetrating polymeric network based on polythiophene, silver nanoparticles (Ag NPs), and poly(methyl methacrylate) (PMMA) produced by the oxidative polymerization of terthiophene by an oxidizing silver salt in a PMMA matrix. Ag NPs are in situ synthesized simultaneously as a byproduct. The reaction occurs very fast in the solid state…

research product

Optimization of Cell Growth on Bacterial Cellulose by Adsorption of Collagen and Poly-L-Lysine

Poly-L-lysine and collagen were separately added to bacterial cellulose (BC) nanofibers. The ionic surface charge had been previously modified in order to promote the adsorption of poly-L-lysine and collagen. Cell adhesion of Chinese hamster ovary (CHO) cells on BC surfaces was confirmed by removing unattached cells from the BC substrates. Cell viability was calculated and it was determined that both poly-L-lysine-BC and collagen-BC substrates are viable for cell growth. The results showed that the cell viability in poly-L-lysine modified BC substrate is similar to the one observed in polystyrene tissue culture plates.

research product

Electrochemical Synthesis of an Organic Thermoelectric Power Generator.

[EN] Energy harvesting through residual heat is considered one of the most promising ways to power wearable devices. In this work, thermoelectric textiles were prepared by coating the fabrics, first with multiple-wall carbon nanotubes (MWCNTs) by using the layer-by-layer technique and second with poly(3,4-ethylenedioxythiophene) (PEDOT) deposited by electrochemical polymerization. Sodium deoxycholate and poly(diallyldimethylammonium chloride) were used as stabilizers to prepare the aqueous dispersions of MWCNTs. The electrochemical deposition of PEDOT on the MWCNT-coated fabric was carried out in a three-electrode electrochemical cell. The polymerization of PEDOT on the fabric increased the…

research product

Manufacturing Te/PEDOT Films for Thermoelectric Applications

In this work, flexible Te films have been synthesized by electrochemical deposition using PEDOT [poly(3,4-ethylenedioxythiophene)] nanofilms as working electrodes. The Te electrodeposition time was varied to find the best thermoelectric properties of the Te/PEDOT double layers. To show the high quality of the Te films grown on PEDOT, the samples were analyzed by Raman spectroscopy, showing the three Raman active modes of Te: E1, A1, and E2. The X-ray diffraction spectra also confirmed the presence of crystalline Te on top of the PEDOT films. The morphology of the Te/PEDOT films was studied using scanning electron microscopy, showing a homogeneous distribution of Te along the film. Also an a…

research product

Changes in the thermoelectric response of vitreous carbon due to the irradiation by γ-rays

In order to study variations in the thermoelectric properties, some commercial glassy carbon samples were subjected to a sequence of steps consisting of a combination of irradiation with γ-rays produced by radioisotopes 60Co, and hydrogen adsorption when the samples were put in an over pressured atmosphere of this gas. With this procedure it was possible to observe that the irradiation decreases the electrical conductivity of glassy carbon samples and the hydrogenation changes the sign of Seebeck coefficient. The material initially is an n-type semiconductor, but with hydrogenation changes to p-type semiconductor. X-ray diffraction analysis showed that the hydrogenated vitreous carbon is mo…

research product

La 1−xCaxMnO3 semiconducting nanostructures: morphology and thermoelectric properties

Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1−xCa x MnO3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has b…

research product

Effects of Gamma Irradiation on the Kinetics of the Adsorption and Desorption of Hydrogen in Carbon Microfibres

In this study, three types of carbon fibres were used, they were ex-polyacrylonitrile carbon fibres with high bulk modulus, ex-polyacrylonitrile fibres with high strength, and vapour grown carbon fibres. All the samples were subjected to a hydrogen adsorption process at room temperature in an over-pressured atmosphere of 25 bars. The adsorption process was monitored through electrical resistivity measurements. As conditioning of the fibres, a chemical activation by acid etching followed by ¿-ray irradiation with 60Co radioisotopes was performed. The surface energy was deter-mined by means of the sessile drop test. Both conditioning treatments are supplementary; the chemical activation works…

research product

Confident methods for the evaluation of the hydrogen content in nanoporous carbon microfibers

Abstract Nanoporous carbon microfibers were grown by chemical vapor deposition in the vapor-liquid solid mode using different fluid hydrocarbons as precursors in different proportions. The as-grown samples were further treated in argon and hydrogen atmospheres at different pressure conditions and annealed at several temperatures in order to deduce the best conditions for the incorporation and re-incorporation of hydrogen into the microfibers through the nanopores. Since there are some discrepancies in the results on the hydrogen content obtained under vacuum conditions, in this work, we have measured the hydrogen content in the microfibers using several analytical methods in ambient conditi…

research product