6533b82ffe1ef96bd12950f2

RESEARCH PRODUCT

Review on Polymers for Thermoelectric Applications.

Andrés CantareroMario CulebrasClara M. Gómez

subject

Materials scienceNanotechnologyReviewlcsh:TechnologyThermoelectric effectnanocompositesintrinsically conducting polymersFigure of meritGeneral Materials ScienceOrders of magnitude (data)lcsh:Microscopylcsh:QC120-168.85chemistry.chemical_classificationConductive polymerlcsh:QH201-278.5lcsh:TPolymerThermoelectric materialschemistrylcsh:TA1-2040Inorganic materialslcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971thermoelectrics

description

In this review, we report the state-of-the-art of polymers in thermoelectricity. Classically, a number of inorganic compounds have been considered as the best thermoelectric materials. Since the prediction of the improvement of the figure of merit by means of electronic confinement in 1993, it has been improved by a factor of 3-4. In the mean time, organic materials, in particular intrinsically conducting polymers, had been considered as competitors of classical thermoelectrics, since their figure of merit has been improved several orders of magnitude in the last few years. We review here the evolution of the figure of merit or the power factor during the last years, and the best candidates to compete with inorganic materials. We also outline the best polymers to substitute classical thermoelectric materials and the advantages they present in comparison with inorganic systems.

10.3390/ma7096701https://pubmed.ncbi.nlm.nih.gov/28788208