Search results for "lcsh:TK1-9971"

showing 10 items of 157 documents

Experimental Investigation into the Effect of Pyrolysis on Chemical Forms of Heavy Metals in Sewage Sludge Biochar (SSB), with Brief Ecological Risk …

2021

Experimental investigations were carried out to study the effect of pyrolysis temperature on the characteristics, structure and total heavy metal contents of sewage sludge biochar (SSB). The changes in chemical forms of the heavy metals (Zn, Cu, Cr, Ni, Pb and Cd) caused by pyrolysis were analyzed, and the potential ecological risk of heavy metals in biochar (SSB) was evaluated. The conversion of sewage sludge into biochar by pyrolysis reduced the H/C and O/C ratios considerably, resulting in stronger carbonization and a higher degree of aromatic condensation in biochar. Measurement results showed that the pH and specific surface area of biochar increased as the pyrolysis temperature increa…

020209 energyecological risk assessment02 engineering and technology010501 environmental scienceslcsh:Technology01 natural sciencesArticleMetalSpecific surface areaBiochar0202 electrical engineering electronic engineering information engineeringGeneral Materials Sciencelcsh:Microscopyheavy metalslcsh:QC120-168.850105 earth and related environmental scienceslcsh:QH201-278.5sewage sludgelcsh:TCarbonizationChemistryBCR sequential extractionHeavy metalspyrolysisBioavailabilityVDP::Teknologi: 500lcsh:TA1-2040visual_artEnvironmental chemistryvisual_art.visual_art_mediumlcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971PyrolysisSludgeMaterials
researchProduct

Optimization of Vehicle-to-Vehicle Frontal Crash Model Based on Measured Data Using Genetic Algorithm

2017

In this paper, a mathematical model for vehicle-to-vehicle frontal crash is developed. The experimental data are taken from the National Highway Traffic Safety Administration. To model the crash scenario, the two vehicles are represented by two masses moving in opposite directions. The front structures of the vehicles are modeled by Kelvin elements, consisting of springs and dampers in parallel, and estimated as piecewise linear functions of displacements and velocities, respectively. To estimate and optimize the model parameters, a genetic algorithm approach is proposed. Finally, it is observed that the developed model can accurately reproduce the real kinematic results from the crash test…

0209 industrial biotechnologyGeneral Computer ScienceComputer scienceCrash02 engineering and technologyVehicle-to-vehicleDamperComputer Science::RoboticsEngineering (all)020901 industrial engineering & automation0203 mechanical engineeringControl theoryparameters estimationGenetic algorithmgenetic algorithmGeneral Materials ScienceSimulationvehicle-to-vehicle crashComputer Science (all)ModelingGeneral EngineeringCrash test020303 mechanical engineering & transportsMaterials Science (all)lcsh:Electrical engineering. Electronics. Nuclear engineeringgenetic algorithm; Modeling; parameters estimation; vehicle-to-vehicle crash; Computer Science (all); Materials Science (all); Engineering (all)lcsh:TK1-9971IEEE Access
researchProduct

Flow Control of Fluid in Pipelines Using PID Controller

2019

In this paper, a PID controller is utilized in order to control the flow rate of the heavy oil in pipelines by controlling the vibration in a motor pump. A torsional actuator is placed on the motor pump in order to control the vibration on a motor and consequently controlling the flow rates in pipelines. The necessary conditions for the asymptotic stability of the proposed controller are validated by implementing the Lyapunov stability theorem. The theoretical concepts are validated utilizing numerical simulations and analysis, which proves the effectiveness of the PID controller in the control of flow rates in pipelines.

0209 industrial biotechnologyGeneral Computer ScienceComputer sciencePID controllercontrol engineeringfeedback02 engineering and technology01 natural sciencesFeedback010305 fluids & plasmas020901 industrial engineering & automationExponential stabilityControl theoryFluid flow controlPID control0103 physical sciencesGeneral Materials Science/dk/atira/pure/subjectarea/asjc/1700VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Lyapunov stabilityControl engineeringComputingGeneral EngineeringTorsion (mechanics)Volumetric flow ratePipeline transportVibrationFlow control (fluid)lcsh:Electrical engineering. Electronics. Nuclear engineeringActuator/dk/atira/pure/core/subjects/computinglcsh:TK1-9971Computer Science(all)Numerical stabilityIEEE Access
researchProduct

Health Indicator for Low-Speed Axial Bearings Using Variational Autoencoders

2020

This paper proposes a method for calculating a health indicator (HI) for low-speed axial rolling element bearing (REB) health assessment by utilizing the latent representation obtained by variational inference using Variational Autoencoders (VAEs), trained on each speed reference in the dataset. Further, versatility is added by conditioning on the speed, extending the VAE to a conditional VAE (CVAE), thereby incorporating all speeds in a single model. Within the framework, the coefficients of autoregressive (AR) models are used as features. The dimensionality reduction inherent in the proposed method lowers the need of expert knowledge to design good condition indicators. Moreover, the sugg…

0209 industrial biotechnologyGeneral Computer Sciencegenerative modelsComputer sciencecondition monitoring02 engineering and technologyLatent variableunsupervised learningFault detection and isolationBearing fault detection020901 industrial engineering & automationVDP::Teknologi: 500::Maskinfag: 5700202 electrical engineering electronic engineering information engineeringGeneral Materials Sciencevariational autoencoderconditional variational autoencoderbusiness.industryDimensionality reduction020208 electrical & electronic engineeringGeneral EngineeringPattern recognitionData pointAutoregressive modelRolling-element bearingFalse alarmArtificial intelligencelcsh:Electrical engineering. Electronics. Nuclear engineeringbusinesslcsh:TK1-9971IEEE Access
researchProduct

Surface Characteristics of Machined Polystyrene with 3D Printed Thermoplastic Tool

2020

An effort is made in this work to appraise the surface characteristics of machined expandable polystyrene (EPS) with a novel 3D printed thermoplastic acrylonitrile-butadiene-styrene (ABS) tool. Linear grooves on EPS were made on a vertical milling machine that was modified to conduct experiments in the laboratory. The tests were designed as per the Taguchi L9 based factorial design of experimentation while varying process parameters such as depth of cut, spindle speed, and feed rate. The machining responses dimensional accuracy and surface roughness of the machined grooves were studied. Furthermore, the surface topography of the machined specimens was considered to investigate the mechanism…

0209 industrial biotechnologyMaterials scienceThermoplastic02 engineering and technologylcsh:TechnologyArticle09 EngineeringTaguchi methodschemistry.chemical_compound020901 industrial engineering & automationMachiningSurface roughnessthermoplastic toolGeneral Materials ScienceComposite materialthree-dimensional printinglcsh:Microscopylcsh:QC120-168.85chemistry.chemical_classificationMathematical modellcsh:QH201-278.5lcsh:Tfused deposition modellingFactorial experiment021001 nanoscience & nanotechnologyexpandable polystyrenechemistrylcsh:TA1-2040surface roughnessdimension accuracymillinglcsh:Descriptive and experimental mechanicsPolystyrenelcsh:Electrical engineering. Electronics. Nuclear engineering03 Chemical Sciences0210 nano-technologyBatch productionlcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

Experimental Research on the Cutting of Metal Materials by Electrical Discharge Machining with Contact Breaking with Metal Band as Transfer Object

2020

The scientific paper presents practical research carried out by a mixed team of Romanian researchers from universities and the business environment. The research consists in applying the process of cutting metallic materials through electrical discharge machining with contact breaking using a metal band as a transfer object. The research was implemented with the help of a specially designed installation in the laboratory and subsequently all the necessary steps were taken to obtain the patent for it. Various metallic materials were cut using this process, but first of all, high alloy steels. In the global research conducted by the authors, active experimental programs and classic experiment…

0209 industrial biotechnologyProcess modelingComputer scienceMechanical engineering02 engineering and technologylcsh:TechnologyArticle020901 industrial engineering & automationElectrical discharge machiningMetallic materialsprocess modelingGeneral Materials SciencePoint (geometry)lcsh:Microscopycentral composite designcuttinglcsh:QC120-168.85lcsh:QH201-278.5lcsh:Telectrical discharge machining with contact breakingProcess (computing)021001 nanoscience & nanotechnologyObject (computer science)Experimental researchBusiness environmentlcsh:TA1-2040metal bandobjective functionslcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)0210 nano-technologylcsh:TK1-9971Materials
researchProduct

Human Dental Pulp Stem Cells Exhibit Different Biological Behaviours in Response to Commercial Bleaching Products

2018

The purpose of this study was to evaluate the diffusion capacity and the biological effects of different bleaching products on human dental pulp stem cells (hDPSCs). The bleaching gel was applied for 90, 30 or 15 min to enamel/dentine discs that adapted in an artificial chamber. The diffusion of hydrogen peroxide (HP) was analysed by fluorometry and the diffusion products were applied to hDPSCs. Cell viability, cell migration and cell morphology assays were performed using the eluates of diffusion products. Finally, cell apoptosis and the expression of mesenchymal stem cell markers were analysed by flow cytometry. Statistical analysis was performed using analysis of variance and Kruskal&nda…

0301 basic medicineCell morphologylcsh:TechnologyArticleFlow cytometry03 medical and health scienceschemistry.chemical_compound0302 clinical medicinestomatognathic systemstem cellsDental pulp stem cellsmedicineGeneral Materials ScienceViability assaylcsh:MicroscopyHydrogen peroxidelcsh:QC120-168.85bleaching productslcsh:QH201-278.5Enamel paintmedicine.diagnostic_testlcsh:TMesenchymal stem celldiffusion030206 dentistryMolecular biologystomatognathic diseases030104 developmental biologychemistrylcsh:TA1-2040visual_artvisual_art.visual_art_mediumcytotoxicitylcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringStem celldental pulplcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

GSaaS: A Service to Cloudify and Schedule GPUs

2018

Cloud technology is an attractive infrastructure solution that provides customers with an almost unlimited on-demand computational capacity using a pay-per-use approach, and allows data centers to increase their energy and economic savings by adopting a virtualized resource sharing model. However, resources such as graphics processing units (GPUs), have not been fully adapted to this model. Although, general-purpose computing on graphics processing units (GPGPU) is becoming more and more popular, cloud providers lack of flexibility to manage accelerators, because of the extended use of peripheral component interconnect (PCI) passthrough techniques to attach GPUs to virtual machines (VMs). F…

0301 basic medicineScheduleGeneral Computer ScienceComputer scienceDistributed computingnetworkingCloud computing02 engineering and technologycomputer.software_genre03 medical and health sciencesGPU resource management020204 information systems0202 electrical engineering electronic engineering information engineeringCloud computingGeneral Materials ScienceResource managementplatform virtualizationbusiness.industrycloud computingGeneral EngineeringVirtualizationShared resource030104 developmental biologyVirtual machineScalabilityGPU cloudificationlcsh:Electrical engineering. Electronics. Nuclear engineeringGeneral-purpose computing on graphics processing unitsbusinesscomputerlcsh:TK1-9971IEEE Access
researchProduct

Availability, demand, perceived constraints and disuse of ADAS technologies in Spain: findings from a national study

2019

Advanced Driver Assistance Systems (ADAS), created for enhancing the driving experience and actively preventing road crashes, have been progressively incorporated in vehicle designing essentially during the last decade. However, the literature has shown how some of these assisting technologies are not used by drivers in tandem with their potential. The aims of this study were, first, to examine the availability and demand of ADAS technologies among Spanish drivers and, secondly, to explore the perceived constraints and discouraging reasons for avoiding the use of ADAS available in their vehicles. For this national cross-sectional study, data from 1,207 Spanish drivers were analyzed. The res…

050210 logistics & transportationreliabilityGeneral Computer ScienceComputer scienceSeguretat viària05 social sciencesGeneral Engineering020206 networking & telecommunicationsAdvanced driver assistance systems02 engineering and technologydriversdemandRisk analysis (engineering)Psicologia0502 economics and business0202 electrical engineering electronic engineering information engineeringNational studyAdvanced driver assistance systems (ADAS)General Materials Sciencelcsh:Electrical engineering. Electronics. Nuclear engineeringdisuselcsh:TK1-9971
researchProduct

Quality Control in 3D Printing: Accuracy Analysis of 3D-Printed Models of Patient-Specific Anatomy

2021

As comparative data on the precision of 3D-printed anatomical models are sparse, the aim of this study was to evaluate the accuracy of 3D-printed models of vascular anatomy generated by two commonly used printing technologies. Thirty-five 3D models of large (aortic, wall thickness of 2 mm, n = 30) and small (coronary, wall thickness of 1.25 mm, n = 5) vessels printed with fused deposition modeling (FDM) (rigid, n = 20) and PolyJet (flexible, n = 15) technology were subjected to high-resolution CT scans. From the resulting DICOM (Digital Imaging and Communications in Medicine) dataset, an STL file was generated and wall thickness as well as surface congruency were compared with the original …

3d printedMaterials science3D printing3d modelFDM printing030204 cardiovascular system & hematologylcsh:TechnologyArticle030218 nuclear medicine & medical imaginglaw.invention03 medical and health sciencesDICOM3D engineering0302 clinical medicinelawStl fileGeneral Materials Sciencelcsh:Microscopycoronarylcsh:QC120-168.85anatomical modellcsh:QH201-278.5Fused deposition modelingaccuracyPolyJet printinglcsh:Tbusiness.industryAnatomy3D printingPatient specificaortalcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)Wall thicknessbusinesslcsh:TK1-9971Materials
researchProduct