6533b86cfe1ef96bd12c8c12
RESEARCH PRODUCT
Health Indicator for Low-Speed Axial Bearings Using Variational Autoencoders
Huynh Van KhangMartin HemmerTor I. WaagAndreas KlausenKjell G. Robbersmyrsubject
0209 industrial biotechnologyGeneral Computer Sciencegenerative modelsComputer sciencecondition monitoring02 engineering and technologyLatent variableunsupervised learningFault detection and isolationBearing fault detection020901 industrial engineering & automationVDP::Teknologi: 500::Maskinfag: 5700202 electrical engineering electronic engineering information engineeringGeneral Materials Sciencevariational autoencoderconditional variational autoencoderbusiness.industryDimensionality reduction020208 electrical & electronic engineeringGeneral EngineeringPattern recognitionData pointAutoregressive modelRolling-element bearingFalse alarmArtificial intelligencelcsh:Electrical engineering. Electronics. Nuclear engineeringbusinesslcsh:TK1-9971description
This paper proposes a method for calculating a health indicator (HI) for low-speed axial rolling element bearing (REB) health assessment by utilizing the latent representation obtained by variational inference using Variational Autoencoders (VAEs), trained on each speed reference in the dataset. Further, versatility is added by conditioning on the speed, extending the VAE to a conditional VAE (CVAE), thereby incorporating all speeds in a single model. Within the framework, the coefficients of autoregressive (AR) models are used as features. The dimensionality reduction inherent in the proposed method lowers the need of expert knowledge to design good condition indicators. Moreover, the suggested methodology allows for setting the probability of false alarms when encoding new data points to the latent variable space using the trained model. The effectiveness of the proposed method is validated based on two different datasets: from a workshop test of an offshore drilling machine and from an in-house test rig for axial bearings. In both datasets, the HI is exceeding the warning and alarm levels with a probability of false alarm (PFA) of 10 -6 , and the method is most effective at lower shaft speeds. publishedVersion
year | journal | country | edition | language |
---|---|---|---|---|
2020-01-01 | IEEE Access |