6533b838fe1ef96bd12a3eef

RESEARCH PRODUCT

Poly(3,4-Ethylenedioxythiophene) nanoparticles as building blocks for hybrid thermoelectric flexible films

Rafael Muñoz-espíClara M. GómezAndrés CantareroMario CulebrasJosé F. Serrano-claumarchirant

subject

Materials scienceSolucions polimèriquesminiemulsionNanoparticle02 engineering and technologyCarbon nanotubepedot010402 general chemistry01 natural sciencesthermoelectricitylaw.inventionchemistry.chemical_compoundVan der Pauw methodPEDOT:PSSlawSeebeck coefficientThermoelectric effectMaterials ChemistryPEDOTcarbon nanotubeselectrical conductivityhybrid materialSurfaces and InterfacesConductivitat elèctricaCiència dels materials021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmschemistryChemical engineeringlcsh:TA1-2040nanoparticleslcsh:Engineering (General). Civil engineering (General)0210 nano-technologyHybrid materiallayer-by-layer assemblyPoly(34-ethylenedioxythiophene)

description

Hybrid thermoelectric flexible films based on poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles and carbon nanotubes were prepared by using layer-by-layer (LbL) assembly. The employed PEDOT nanoparticles were synthesized by oxidative miniemulsion polymerization by using iron(III) p-toluenesulfonate hexahydrate (FeTos) as an oxidant and poly(diallyldimethylammonium chloride) (PDADMAC) as stabilizer. Sodium deoxycholate (DOC) was used as a stabilizer to prepare the aqueous dispersions of the carbon nanotubes. Hybrid thermoelectric films were finally prepared with different monomer/oxidant molar ratios and different types of carbon nanotubes, aiming to maximize the power factor (PF). The use of single-wall (SWCNT), double-wall (DWCNT), and multiwall (MWCNT) carbon nanotubes was compared. The Seebeck coefficient was measured by applying a temperature difference between the ends of the film and the electrical conductivity was measured by the Van der Pauw method. The best hybrid film in this study exhibited a PF of 72 &micro

10.3390/coatings10010022