6533b7d6fe1ef96bd1265b1f
RESEARCH PRODUCT
Hypoxia-Induced miR-675-5p Supports β-Catenin Nuclear Localization by Regulating GSK3-β Activity in Colorectal Cancer Cell Lines
Marco TripodiAlice ConigliaroMaria Magdalena BarrecaMaria Giulia PradoLaura SaievaRiccardo AlessandroChiara Zichittellasubject
0301 basic medicineTranscription factor complexKaplan-Meier Estimatelcsh:Chemistry0302 clinical medicineGSK-3poxiahylcsh:QH301-705.5long non-coding H19Spectroscopybeta CateninKinaseChemistryGeneral MedicineCell HypoxiaComputer Science ApplicationsCell biologyGene Expression Regulation Neoplastic030220 oncology & carcinogenesisColorectal NeoplasmsProtein BindingActive Transport Cell Nucleuscolorectal cancermiR-675TransfectionCatalysisArticleInorganic Chemistry03 medical and health sciencesCell Line TumormicroRNAGene silencingHumansPhysical and Theoretical ChemistryMolecular BiologyGlycogen Synthase Kinase 3 betahypoxiaOrganic ChemistryRNAComputational Biologyβ-cateninHCT116 CellsMicroRNAs030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Microscopy FluorescenceCateninMutationNuclear localization sequencedescription
The reduction of oxygen partial pressure in growing tumors triggers numerous survival strategies driven by the transcription factor complex HIF1 (Hypoxia Inducible Factor-1). Recent evidence revealed that HIF1 promotes rapid and effective phenotypic changes through the induction of non-coding RNAs, whose contribution has not yet been fully described. Here we investigated the role of the hypoxia-induced, long non-coding RNA H19 (lncH19) and its intragenic miRNA (miR-675-5p) into HIF1-Wnt crosstalk. During hypoxic stimulation, colorectal cancer cell lines up-regulated the levels of both the lncH19 and its intragenic miR-675-5p. Loss of expression experiments revealed that miR-675-5p inhibition, in hypoxic cells, hampered &beta
year | journal | country | edition | language |
---|---|---|---|---|
2020-05-01 | International Journal of Molecular Sciences |