6533b7d6fe1ef96bd1265bd6
RESEARCH PRODUCT
Biomass Assessment of Agricultural Crops Using Multi-temporal Dual-Polarimetric TerraSAR-X Data
Nima AhmadianErik BorgChristopher ConradTobias UllmannReinhard ZölitzJochem Verrelstsubject
food.ingredient010504 meteorology & atmospheric sciencesGeography Planning and DevelopmentPolarimetrySoil scienceTerraSAR-X · Agricultural crop · Biomass · Stepwise regression · Water cloud model (WCM) · Random Forest · DEMMIN01 natural scienceslaw.inventionCropfoodlawEarth and Planetary Sciences (miscellaneous)RadarCanolaInstrumentationWater content0105 earth and related environmental sciences2. Zero hunger04 agricultural and veterinary sciences15. Life on landStepwise regressionRandom forest040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceHordeum vulgaredescription
The biomass of three agricultural crops, winter wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and canola (Brassica napus L.), was studied using multi-temporal dual-polarimetric TerraSAR-X data. The radar backscattering coefficient sigma nought of the two polarization channels HH and VV was extracted from the satellite images. Subsequently, combinations of HH and VV polarizations were calculated (e.g. HH/VV, HH + VV, HH × VV) to establish relationships between SAR data and the fresh and dry biomass of each crop type using multiple stepwise regression. Additionally, the semi-empirical water cloud model (WCM) was used to account for the effect of crop biomass on radar backscatter data. The potential of the Random Forest (RF) machine learning approach was also explored. The split sampling approach (i.e. 70% training and 30% testing) was carried out to validate the stepwise models, WCM and RF. The multiple stepwise regression method using dual-polarimetric data was capable to retrieve the biomass of the three crops, particularly for dry biomass, with R2 > 0.7, without any external input variable, such as information on the (actual) soil moisture. A comparison of the random forest technique with the WCM reveals that the RF technique remarkably outperformed the WCM in biomass estimation, especially for the fresh biomass. For example, the R2 > 0.68 for the fresh biomass estimation of different crop types using RF whereas WCM show R2 < 0.35 only. However, for the dry biomass, the results of both approaches resembled each other.
year | journal | country | edition | language |
---|---|---|---|---|
2019-10-01 | PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science |