6533b7d6fe1ef96bd1265cc8
RESEARCH PRODUCT
Graphene Cardboard: from Ripples to Tunable Metamaterial
Pekka Koskinensubject
Materials sciencePhysics and Astronomy (miscellaneous)Orders of magnitude (temperature)FOS: Physical sciences02 engineering and technology01 natural scienceslaw.inventionNanomaterialssymbols.namesakelawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesFigure of merit010306 general physicsCondensed Matter - Materials ScienceNanocompositeta114Condensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryGrapheneMaterials Science (cond-mat.mtrl-sci)Metamaterial021001 nanoscience & nanotechnologyPoisson's ratiosymbolsOptoelectronicsvan der Waals force0210 nano-technologybusinessdescription
Recently graphene was introduced with tunable ripple texturing, a nanofabric enabled by graphene's remarkable elastic properties. However, one can further envision sandwiching the ripples, thus constructing composite nanomaterial, graphene cardboard. Here the basic mechanical properties of such structures are investigated computationally. It turns out that graphene cardboard is highly tunable material, for its elastic figures of merit vary orders of magnitude, with Poisson ratio tunable from 10 to -0.5 as one example. These trends set a foundation to guide the design and usage of metamaterials made of rippled van der Waals solids.
year | journal | country | edition | language |
---|---|---|---|---|
2014-01-01 |