6533b7d6fe1ef96bd1265cda

RESEARCH PRODUCT

Response-theory for nonresonant hole burning: Stochastic dynamics

Gregor Diezemann

subject

PhysicsCondensed Matter (cond-mat)General Physics and AstronomyFOS: Physical sciencesFunction (mathematics)Condensed MatterDipoleAmplitudeStochastic dynamicsSpectral hole burningRelaxation (physics)IrradiationAtomic physicsSupercooling

description

Using non-linear response theory the time signals relevant for nonresonant spectral hole burning are calculated. The step-reponse function following the application of a high amplitude ac field (pump) and an intermediate waiting period is shown to be the sum of the equilibrium integrated response and a modification due to the preparation via ac irradiation. Both components are calculated for a class of stochastic dipole reorientation models. The results indicate that the method can be used for a clearcut distinction of homogeneously and heterogeneously broadened susceptibilities as they occur in the relaxation of supercooled liquids or other disordered materials. This is because only in the heterogeneous case is a frequency selective modification of the response possible.

10.1209/epl/i2001-00195-4http://arxiv.org/abs/cond-mat/0002435