6533b7d6fe1ef96bd1266511

RESEARCH PRODUCT

Quantum and Classical Statistical Mechanics of the Non-Linear Schrödinger, Sinh-Gordon and Sine-Gordon Equations

Jussi TimonenR. K. BulloughD. J. Pilling

subject

Coupling constantPhysicsPartition function (statistical mechanics)Schrödinger equationsymbols.namesakeNonlinear Sciences::Exactly Solvable and Integrable SystemsQuantum mechanicssymbolsRelativistic wave equationsMethod of quantum characteristicsHigh Energy Physics::ExperimentSupersymmetric quantum mechanicsQuantum statistical mechanicsFractional quantum mechanicsMathematical physics

description

We are going to describe our work on the quantum and classical statistical mechanics of some exactly integrable non-linear one dimensional systems. The simplest is the non-linear Schrodinger equation (NLS) $$i{\psi _t} = - {\psi _{XX}} + 2c{\psi ^ + }\psi \psi $$ (1) where c, the coupling constant, is positive. The others are the sine- and sinh-Gordon equations (sG and shG) $${\phi _{xx}} - {\phi _{tt}} = {m^2}\sin \phi $$ (1.2) $${\phi _{xx}} - {\phi _{tt}} = {m^2}\sinh \phi $$ (1.3)

https://doi.org/10.1007/978-3-662-02449-2_16