6533b7d6fe1ef96bd12665e2

RESEARCH PRODUCT

Improvement in MRS parameter estimation by joint and laterally constrained inversion of MRS and TEM data

Ahmad A. BehroozmandEsben AukenGianluca FiandacaGianluca FiandacaAnders Vest Christiansen

subject

GeophysicsNuclear magnetic resonanceElectromagneticsGeochemistry and PetrologyEstimation theoryElectrical resistivity and conductivityDc resistivityBoreholeInversion (meteorology)Magnetic resonance soundingSynthetic dataGeologyComputational physics

description

We developed a new scheme for joint and laterally constrained inversion (LCI) of magnetic resonance sounding (MRS) data and transient electromagnetic (TEM) data, which greatly improves the estimation of the MRS model parameters. During the last few decades, electrical and electromagnetic methods have been widely used for groundwater investigation, but they suffer from some inherent limitations; for example, equivalent layer sequences. Furthermore, the water content information is only empirically correlated to resistivity of the formation. MRS is a noninvasive geophysical technique that directly quantifies the water content distribution from surface measurements. The resistivity information of the subsurface is obtained from a complementary geophysical method such as TEM or DC resistivity methods. The conventional inversion of MRS data assumes the resulting resistivity structure to be correct and considers a constant MRS kernel through the inversion. We found that this assumption may introduce an error to the forward modeling and consequently could result in erroneous parameter estimations in the inversion process. We investigated the advantage of TEM for the joint inversion compared to DC resistivity. A fast and numerically efficient MRS forward routine made it possible to invert the MRS and TEM data sets simultaneously along profiles. Furthermore, by application of lateral constraints on the model parameters, lateral smooth 2D model sections could be be obtained. The simultaneous inversion for resistivity and MRS parameters led to a more reliable and robust estimation of all parameters, and the MRS data diminished the range of equivalent resistivity models. We examined the approach through synthetic data and a field example in Denmark where good agreement with borehole data was demonstrated with clear correlation between the relaxation time [Formula: see text] and the grain size distribution of a sandy aquifer.

10.1190/geo2011-0404.1https://pure.au.dk/portal/da/publications/improvement-in-mrs-parameter-estimation-by-joint-and-laterally-constrained-inversion-of-mrs-and-tem-data(6e1c9908-d455-49c8-98b5-d774eaeb32bc).html