6533b7d6fe1ef96bd1266701

RESEARCH PRODUCT

Modification of magnetic anisotropy in Ni thin films by poling of (011) PMN-PT piezosubstrates

Stefan EisebittGerhard JakobMathias KläuiAlexander TkachAndreas KehlbergerFelix Büttner

subject

010302 applied physicsMaterials scienceCondensed matter physicsMagnetoresistancePoling02 engineering and technologySubstrate (electronics)Sputter depositionCoercivity021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic anisotropyNuclear magnetic resonanceArtificial multiferroicsthin films0103 physical sciencesmagnetoelectric couplingddc:530CrystalliteThin film0210 nano-technology

description

ABSTRACTThis study reports the magnetic and magnetotransport properties of 20 nm thick polycrystalline Ni films deposited by magnetron sputtering on unpoled piezoelectric (011) [PbMg1/3Nb2/3O3]0.68-[PbTiO3]0.32 (PMN-PT) substrates. The magnetoresistance (MR), as well as the magnetization reversal, is found to depend on the polarization state of the piezosubstrate. Upon poling the PMN-PT substrate, which results in a transfer of strain to the Ni film, the MR value decreases by a factor of 12 at room temperature and a factor of 21 at 50 K for the current direction along the PMN-PT [100] direction, and slightly increases for the [01] current direction. Simultaneously, a strong increase in the room temperature coercive field value is observed, while the ratio between the remnant and saturation magnetization shows a pronounced minimum for the [100] direction, indicating it as a hard axis, induced by poling the piezosubstrate.

10.1080/00150193.2016.1167519http://hdl.handle.net/10773/19806