0000000000077633

AUTHOR

Felix Büttner

Accurate calculation of the transverse anisotropy in perpendicularly magnetized multilayers

The transverse anisotropy constant and the related D\"oring mass density are key parameters of the one-dimensional model to describe the motion of magnetic domain walls. So far, no general framework is available to determine these quantities from static characterizations such as magnetometry measurements. Here, we derive a universal analytical expression to calculate the transverse anisotropy constant for the important class of perpendicular magnetic multilayers. All the required input parameters of the model, such as the number of repeats, the thickness of a single magnetic layer, and the layer periodicity, as well as the effective perpendicular anisotropy, the saturation magnetization, an…

research product

Correlation between spin structure oscillations and domain wall velocities

Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls in curved nanowires. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. Here we use direct dynamic imaging of the nanoscale spin structure that allows us for the first time to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes. We show that the e…

research product

Correlation between spin structure oscillations and domain wall velocities (presentation video)

Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. We use direct dynamic imaging of the nanoscale spin structure to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes and we show that the extrinsic pinning from defects in the nanowire only affec…

research product

Modification of magnetic anisotropy in Ni thin films by poling of (011) PMN-PT piezosubstrates

ABSTRACTThis study reports the magnetic and magnetotransport properties of 20 nm thick polycrystalline Ni films deposited by magnetron sputtering on unpoled piezoelectric (011) [PbMg1/3Nb2/3O3]0.68-[PbTiO3]0.32 (PMN-PT) substrates. The magnetoresistance (MR), as well as the magnetization reversal, is found to depend on the polarization state of the piezosubstrate. Upon poling the PMN-PT substrate, which results in a transfer of strain to the Ni film, the MR value decreases by a factor of 12 at room temperature and a factor of 21 at 50 K for the current direction along the PMN-PT [100] direction, and slightly increases for the [01] current direction. Simultaneously, a strong increase in the …

research product

Ultrafast Optical Demagnetization manipulates Nanoscale Spin Structure in Domain Walls

During ultrafast demagnetization of a magnetically ordered solid, angular momentum has to be transferred between the spins, electrons, and phonons in the system on femto- and picosecond timescales. Although the intrinsic spin-transfer mechanisms are intensely debated, additional extrinsic mechanisms arising due to nanoscale heterogeneity have only recently entered the discussion. Here we use femtosecond X-ray pulses from a free-electron laser to study thin film samples with magnetic domain patterns. We observe an infrared-pump-induced change of the spin structure within the domain walls on the sub-picosecond timescale. This domain-topography-dependent contribution connects the intrinsic dem…

research product

Domain wall transformations and hopping in La0.7Sr0.3MnO3nanostructures imaged with high resolution x-ray magnetic microscopy

We investigate the effect of electric current pulse injection on domain walls in La(0.7)Sr(0.3)MnO(3) (LSMO) half-ring nanostructures by high resolution x-ray magnetic microscopy at room temperature. Due to the easily accessible Curie temperature of LSMO, we can employ reasonable current densities to induce the Joule heating necessary to observe effects such as hopping of the domain walls between different pinning sites and nucleation/annihilation events. Such effects are the dominant features close to the Curie temperature, while spin torque is found to play a small role close to room temperature. We are also able to observe thermally activated domain wall transformations and we find that,…

research product

Magnetic Skyrmions: Current-Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures (Adv. Mater. 49/2018)

research product

Automatable sample fabrication process for pump-probe X-ray holographic imaging

Soft X-ray holography is a recently developed imaging technique with sub-50 nm spatial resolution. Key advantages of this technique are magnetic and elemental sensitivity, compatibility with imaging at free electron laser facilities, and immunity to in-situ sample excitations and sample drift, which enables the reliable detection of relative changes between two images with a precision of a few nanometers. In X-ray holography, the main part of the experimental setup is integrated in the sample, which consequently requires a large number of fabrication steps. Here we present a generic design and an automatable fabrication process for samples suitable, and optimized for, efficient high resolut…

research product

Current-Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures.

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Magnetic skyrmions promise breakthroughs in future memory and computing devices due to their inherent stability and small size. Their creation and current driven motion have been recently observed at room temperature, but the key mechanisms of their formation are not yet well-understood. Here it is shown that in heavy metal/ferromagnet heterostructures, pulsed currents can drive morphological transitions between labyrinth-like, stripe-like, and skyrmionic states. Using high-resolution X-ray microscopy, the spin texture evolution with temperature and magnetic field is imaged and it is demonstrated that with transient Joule heating, topologica…

research product

Ultrafast Dynamics of Magnetic Domain Structures Probed by Coherent Free-Electron Laser Light

Synchrotron radiation news 26(6), 27 - 32 (2013). doi:10.1080/08940886.2013.850384

research product

Magnetoelectric properties of epitaxialFe3O4thin films on (011) PMN-PT piezosubstrates

We determine the magnetic and magnetotransport properties of 33 nm thick ${\mathrm{Fe}}_{3}{\mathrm{O}}_{4}$ films epitaxially deposited by rf-magnetron sputtering on unpoled (011) ${[{\mathrm{PbMg}}_{1/3}{\mathrm{Nb}}_{2/3}{\mathrm{O}}_{3}]}_{0.68}\ensuremath{-}{[{\mathrm{PbTiO}}_{3}]}_{0.32}$ (PMN-PT) substrates. The magnetoresistance (MR), as well as the magnetization reversal, strongly depend on the in-plane crystallographic direction of the epitaxial (011) ${\mathrm{Fe}}_{3}{\mathrm{O}}_{4}$ film and strain. When the magnetic field is applied along [100], the magnetization loops are slanted and the sign of the longitudinal MR changes from positive to negative around the Verwey transiti…

research product

Monolithic focused reference beam x-ray holography

Fourier transform holography is a highly efficient and robust imaging method, suitable for single-shot imaging at coherent X-ray sources. In its common implementation, the image contrast is limited by the reference signal generated by a small pinhole aperture. Increased pinhole diameters improve the signal, whereas the resolution is diminished. Here we report a new concept to decouple the spatial resolution from the image contrast by employing a Fresnel zone plate to provide the reference beam. Superimposed on-axis images of distinct foci are separated with a novel algorithm. Our method is insensitive to mechanical drift or vibrations and allows for long integration times common at low-flux…

research product

Dynamics and inertia of skyrmionic spin structures

Understanding the motion of magnetic skyrmions is essential if they are to be used as information carriers in devices. It is now shown that topological confinement endows the skyrmions with an unexpectedly large mass, which plays a key role in their dynamics.

research product

Accurate calculation of the transverse anisotropy of a magnetic domain wall in perpendicularly magnetized multilayers

Bloch domain walls are the most common type of transition between two out-of-plane magnetized domains (one magnetized upwards, one downwards) in films with perpendicular magnetic anisotropy. The rotation of the spins of such domain walls in the plane of the film requires energy, which is described by an effective anisotropy, the so-called transverse or hard axis anisotropy ${K}_{\ensuremath{\perp}}$. This anisotropy and the related D\"oring mass density of the domain wall are key parameters of the one-dimensional model to describe the motion of magnetic domain walls. In particular, the critical field strength or current density where oscillatory domain wall motion sets in (Walker breakdown)…

research product

Synchronous precessional motion of multiple domain in a ferromagnetic nanowire by perpendicular field pulses

Magnetic storage and logic devices based on magnetic domain wall motion rely on the precise and synchronous displacement of multiple domain walls. The conventional approach using magnetic fields does not allow for the synchronous motion of multiple domains. As an alternative method, synchronous current-induced domain wall motion was studied, but the required high-current densities prevent widespread use in devices. Here we demonstrate a radically different approach: we use out-of-plane magnetic field pulses to move in-plane domains, thus combining field-induced magnetization dynamics with the ability to move neighbouring domain walls in the same direction. Micromagnetic simulations suggest …

research product

Dynamics and topological mass of skyrmionic spin structures (presentation video)

Skyrmions are topologically protected particle-like configurations, with a topological complexity described by their Skyrmion number. In magnetic systems, they have been numerically predicted to exhibit rich dynamics, such as the gyrotropic and breathing modes, dominated by their topology. Recent experimental advances brought their static manipulation well under control. However, their dynamical behaviour is largely unexplored experimentally. In this work, we provide with the first direct observation of eigenmode skyrmion dynamics. In particular, we present dynamical imaging data with high temporal and spatial resolution to demonstrate the GHz gyrotropic mode of a single skyrmion bubble, as…

research product

Magnetic states in low-pinning high-anisotropy material nanostructures suitable for dynamic imaging

We present magnetic domain states in a material configuration with high (perpendicular) magnetic anisotropy and particularly low magnetic pinning. This material, a B-doped Co/Pt multilayer configuration, exhibits a strong magnetic contrast in x-ray transmission experiments, making it apt for dynamic imaging with modern synchrotron techniques, providing high spatial and high temporal resolution simultaneously. By analyzing the static spin structures in nanodisks at variable external fields, we show that CoB/Pt multilayers exhibit low enough domain wall pinning to manipulate the domain pattern with weak stimuli and in particular to move domains and domain walls. We demonstrate in a proof-of-p…

research product

Holographically aided iterative phase retrieval

Fourier transform holography (FTH) is a noise-resistant imaging technique which allows for nanometer spatial resolution x-ray imaging, where the inclusion of a small reference scattering object provides the otherwise missing phase information. With FTH, one normally requires a considerable distance between the sample and the reference to ensure spatial separation of the reconstruction and its autocorrelation. We demonstrate however that this requirement can be omitted at the small cost of iteratively separating the reconstruction and autocorrelation. In doing so, the photon efficiency of FTH can be increased due to a smaller illumination area, and we show how the presence of the reference p…

research product

Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy

Magnetic skyrmions are highly promising candidates for future spintronic applications such as skyrmion racetrack memories and logic devices. They exhibit exotic and complex dynamics governed by topology and are less influenced by defects, such as edge roughness, than conventionally used domain walls. In particular, their finite topological charge leads to a predicted "skyrmion Hall effect", in which current-driven skyrmions acquire a transverse velocity component analogous to charged particles in the conventional Hall effect. Here, we present nanoscale pump-probe imaging that for the first time reveals the real-time dynamics of skyrmions driven by current-induced spin orbit torque (SOT). We…

research product

Electric field modification of magnetotransport in Ni thin films on (011) PMN-PT piezosubstrates

This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 106, 062404 (2015) and may be found at https://doi.org/10.1063/1.4907775 This study reports the magnetotransport and magnetic properties of 20 nm-thick polycrystalline Ni films deposited by magnetron sputtering on unpoled piezoelectric (011) [PbMg1/3Nb2/3O3]0.68-[PbTiO3]0.32 (PMN-PT) substrates. The longitudinal magnetoresistance (MR) of the Ni films on (011) PMN-PT, measured at room temperature in the magnetic field range of −0.3 T < μ0H < 0.3 T, is found to depend on the crystallographic direction and polarization state …

research product

Quantitative analysis of magnetization reversal in Ni thin films on unpoled and poled (0 1 1) [PbMg1/3Nb2/3O3]0.68–[PbTiO3]0.32piezoelectric substrates

The field angle dependence of the magnetization reversal in 20 nm thick polycrystalline Ni films grown on piezoelectric (0 1 1) [PbMg1/3Nb2/3O3](0.68)-[PbTiO3](0.32) (PMN-PT) substrates is analysed quantitatively to study the magnetic anisotropy induced in the film by poling the piezosubstrate. While the PMN-PT is in the unpoled state, the magnetization reversal is almost isotropic as expected from the polycrystalline nature of the film and corresponding to an orientation ratio (OR) of 1.2. The orientation ratio is obtained by fitting the angular dependence of normalized remanent magnetization to an adapted Stoner-Wohlfarth relation. Upon poling the piezosubstrate, a strong uniaxial anisotr…

research product

Magnetic skyrmions: from fundamental to applications

In this topical review, we will discuss recent advances in the field of skyrmionics (fundamental and applied aspects) mainly focusing on skyrmions that can be realized in thin film structures where an ultrathin ferromagnetic layer (&lt;1 nm) is coupled to materials with large spin-orbit coupling. We review the basic topological nature of the skyrmion spin structure that can entail a stabilization due to the chiral exchange interaction present in many multilayer systems with structural inversion asymmetry. The static spin structures and the dynamics of the skyrmions are also discussed. In particular, we show that skyrmions can be displaced with high reliability and efficiency as needed for t…

research product