6533b7d6fe1ef96bd126671a

RESEARCH PRODUCT

The Ultimate Fate of Supercooled Liquids

Jacob D. StevensonPeter G. Wolynes

subject

Length scaleFOS: Physical sciencesCrystal growth02 engineering and technologyCondensed Matter - Soft Condensed Matter010402 general chemistry01 natural sciencesCondensed Matter::Disordered Systems and Neural NetworksArticlelaw.inventionCrystalCrystallinitylawPhysical and Theoretical ChemistryCrystallizationSupercoolingCondensed Matter - Statistical MechanicsPhysicsCondensed matter physicsStatistical Mechanics (cond-mat.stat-mech)Disordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural Networks021001 nanoscience & nanotechnology0104 chemical sciencesCondensed Matter::Soft Condensed MatterQuantum TheoryThermodynamicsSoft Condensed Matter (cond-mat.soft)0210 nano-technologyGlass transitionCrystallization

description

In recent years it has become widely accepted that a dynamical length scale {\xi}_{\alpha} plays an important role in supercooled liquids near the glass transition. We examine the implications of the interplay between the growing {\xi}_{\alpha} and the size of the crystal nucleus, {\xi}_M, which shrinks on cooling. We argue that at low temperatures where {\xi}_{\alpha} > {\xi}_M a new crystallization mechanism emerges enabling rapid development of a large scale web of sparsely connected crystallinity. Though we predict this web percolates the system at too low a temperature to be easily seen in the laboratory, there are noticeable residual effects near the glass transition that can account for several previously observed unexplained phenomena of deeply supercooled liquids including Fischer clusters, and anomalous crystal growth near T_g.

https://dx.doi.org/10.48550/arxiv.1006.5840