6533b7d6fe1ef96bd1266fa6
RESEARCH PRODUCT
miR-7 Restores Phenotypes in Myotonic Dystrophy Muscle Cells by Repressing Hyperactivated Autophagy
Ruben ArteroDenis FurlingAriadna BargielaMaria Sabater-arcissubject
musculoskeletal diseases0301 basic medicineoligonucleotidemuscle atrophyautophagyBiologyMyotonic dystrophyArticleMuscleblind03 medical and health scienceschemistry.chemical_compoundMyoblast fusion0302 clinical medicineDrug DiscoverymicroRNAmedicineMBNL1MyocyteMyotonic DystrophymiRNAtherapy[SDV.MHEP] Life Sciences [q-bio]/Human health and pathologyAutophagyUPS systemmiR-7medicine.diseasePhenotypeMuscle atrophyCell biology030104 developmental biologychemistry030220 oncology & carcinogenesisMolecular MedicineCTG expansionsmedicine.symptom[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologydescription
International audience; Unstable CTG expansions in the 3' UTR of the DMPK gene are responsible for myotonic dystrophy type 1 (DM1) condition. Muscle dysfunction is one of the main contributors to DM1 mortality and morbidity. Pathways by which mutant DMPK trigger muscle defects, however, are not fully understood. We previously reported that miR-7 was downregulated in a DM1 Drosophila model and in biopsies from patients. Here, using DM1 and normal muscle cells, we investigated whether miR-7 contributes to the muscle phenotype by studying the consequences of replenishing or blocking miR-7, respectively. Restoration of miR-7 with agomiR-7 was sufficient to rescue DM1 myoblast fusion defects and myotube growth. Conversely, oligonucleotide-mediated blocking of miR-7 in normal myoblasts led to fusion and myotube growth defects. miR-7 was found to regulate autophagy and the ubiquitin-proteasome system in human muscle cells. Thus, low levels of miR-7 promoted both processes, and high levels of miR-7 repressed them. Furthermore, we uncovered that the mechanism by which miR-7 improves atrophy-related phenotypes is independent of MBNL1, thus suggesting that miR-7 acts downstream or in parallel to MBNL1. Collectively, these results highlight an unknown function for miR-7 in muscle dysfunction through autophagy- and atrophy-related pathways and support that restoration of miR-7 levels is a candidate therapeutic target for counteracting muscle dysfunction in DM1.
year | journal | country | edition | language |
---|---|---|---|---|
2019-11-01 |