6533b7d6fe1ef96bd1267074

RESEARCH PRODUCT

Ni-Based Catalysts for Low Temperature Methane Steam Reforming: Recent Results on Ni-Au and Comparison with Other Bi-Metallic Systems

Giuseppe PantaleoAnna Maria VeneziaLeonarda F. LiottaHongjing WuValeria La ParolaFabrizio Puleo

subject

Materials scienceMethane reformerInorganic chemistryIndustrial catalystschemistry.chemical_elementhydrocarbons steam reforminggoldlcsh:Chemical technologysurface alloyCatalysissupport modificationCatalysisSteam reforminglcsh:ChemistryNickelnickelchemistrylcsh:QD1-999bimetalliclcsh:TP1-1185hydrocarbons<b> </b>steam reforming; nickel; gold; bimetallic; surface alloy; support modificationPhysical and Theoretical ChemistryBimetallic stripCarbonHydrogen production

description

Steam reforming of light hydrocarbons provides a promising method for hydrogen production. Ni-based catalysts are so far the best and the most commonly used catalysts for steam reforming because of their acceptably high activity and significantly lower cost in comparison with alternative precious metal-based catalysts. However, nickel catalysts are susceptible to deactivation from the deposition of carbon, even when operating at steam-to-carbon ratios predicted to be thermodynamically outside of the carbon-forming regime. Reactivity and deactivation by carbon formation can be tuned by modifying Ni surfaces with a second metal, such as Au through alloy formation. In the present review, we summarize the very recent progress in the design, synthesis, and characterization of supported bimetallic Ni-based catalysts for steam reforming. The progress in the modification of Ni with noble metals (such as Au and Ag) is discussed in terms of preparation, characterization and pretreatment methods. Moreover, the comparison with the effects of other metals (such as Sn, Cu, Co, Mo, Fe, Gd and B) is addressed. The differences of catalytic activity, thermal stability and carbon species between bimetallic and monometallic Ni-based catalysts are also briefly shown.

10.3390/catal3020563http://hdl.handle.net/10447/104048