6533b7d6fe1ef96bd1267075
RESEARCH PRODUCT
Nonlinear Structural Mechanics Based Modeling of Carbon Nanotube Deformation
David M. ParksMary C. BoyceAntonio Pantanosubject
Materials sciencecarbon nanotube numerical modelStructural mechanicsShell (structure)General Physics and AstronomyNanotechnologyCarbon nanotubeFinite element methodlaw.inventionSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineCondensed Matter::Materials ScienceMolecular dynamicssymbols.namesakeBucklinglawPhysics::Atomic and Molecular ClusterssymbolsDeformation (engineering)van der Waals forceComposite materialdescription
A nonlinear structural mechanics based approach for modeling the structure and the deformation of single-wall and multiwall carbon nanotubes (CNTs) is presented. Individual tubes are modeled using shell finite elements, where a specific pairing of elastic properties and mechanical thickness of the tube wall is identified to enable successful modeling with shell theory. The effects of van der Waals forces are simulated with special interaction elements. This new CNT modeling approach is verified by comparison with molecular dynamics simulations and high-resolution micrographs available in the literature. The mechanics of wrinkling of multiwall CNTs are studied, demonstrating the role of the multiwalled shell structure and interwall van der Waals interactions in governing buckling and postbuckling behavior.
year | journal | country | edition | language |
---|---|---|---|---|
2003-10-03 | Physical Review Letters |