0000000000287221

AUTHOR

David M. Parks

showing 3 related works from this author

Nonlinear Structural Mechanics Based Modeling of Carbon Nanotube Deformation

2003

A nonlinear structural mechanics based approach for modeling the structure and the deformation of single-wall and multiwall carbon nanotubes (CNTs) is presented. Individual tubes are modeled using shell finite elements, where a specific pairing of elastic properties and mechanical thickness of the tube wall is identified to enable successful modeling with shell theory. The effects of van der Waals forces are simulated with special interaction elements. This new CNT modeling approach is verified by comparison with molecular dynamics simulations and high-resolution micrographs available in the literature. The mechanics of wrinkling of multiwall CNTs are studied, demonstrating the role of the …

Materials sciencecarbon nanotube numerical modelStructural mechanicsShell (structure)General Physics and AstronomyNanotechnologyCarbon nanotubeFinite element methodlaw.inventionSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineCondensed Matter::Materials ScienceMolecular dynamicssymbols.namesakeBucklinglawPhysics::Atomic and Molecular ClusterssymbolsDeformation (engineering)van der Waals forceComposite materialPhysical Review Letters
researchProduct

Mixed finite element-tight-binding electromechanical analysis of carbon nanotubes

2004

Electrical transport properties of carbon nanotubes can be dramatically changed by mechanical deformations that alter tube shape and the corresponding positions of the atoms comprising the tube wall. In principle, detailed atomic/electronic calculations can provide both the deformed configuration and the resulting electrical transport behavior of the tube. Here we simplify the process by refining a previously-developed nonlinear structural mechanics finite-element-based procedure for modeling mechanical behavior of carbon nanotubes to account explicitly for tube chirality. A quadrilateral element overlay procedure provides an isotropic finite element model of hexagonal cells within a graphe…

Materials scienceDeformation (mechanics)Structural mechanicsGrapheneIsotropyGeneral Physics and AstronomyCarbon nanotubeMolecular physicsFinite element methodlaw.inventionTight bindingComputational chemistrylawTube (fluid conveyance)Journal of Applied Physics
researchProduct

Mechanics of deformation of single- and multi-wall carbon nanotubes

2004

Abstract An effective continuum/finite element (FE) approach for modeling the structure and the deformation of single- and multi-wall carbon nanotubes (CNTs) is presented. Individual tubes are modeled using shell elements, where a specific pairing of elastic properties and mechanical thickness of the tube wall is identified to enable successful modeling with shell theory. The incorporation and role of an initial internal distributed stress through the thickness of the wall, due to the cylindrical nature of the tube, are discussed. The effects of van der Waals forces, crucial in multi-wall nanotubes and in tube/tube or tube/substrate interactions, are simulated by the construction of special…

Materials scienceNanocompositeMechanical EngineeringShell (structure)Mechanical properties of carbon nanotubesBendingMechanicsCarbon nanotubeCondensed Matter Physicslaw.inventionStress (mechanics)symbols.namesakeMechanics of MaterialslawsymbolsDeformation (engineering)Composite materialvan der Waals forceJournal of the Mechanics and Physics of Solids
researchProduct