6533b7d6fe1ef96bd126713d

RESEARCH PRODUCT

Full inhibition of enzymatic browning in the presence of thiol-functionalised silica nanomaterial

Sara Muñoz-pinaÁNgel ArgüellesAna AndrésCarmen CollRamón Martínez-máñezJosé V. Ros-lis

subject

PPOTECNOLOGIA DE ALIMENTOSApple juiceTyrosinaseModel systemUVM-7Polyphenol oxidaseAnalytical ChemistryNanomaterials0404 agricultural biotechnologyQUIMICA ORGANICAThiolsBrowningOrganic chemistrySulfhydryl CompoundsFumed silicaInhibitionchemistry.chemical_classificationQUIMICA INORGANICA04 agricultural and veterinary sciencesGeneral MedicineSilicon Dioxide040401 food scienceNanostructuresEnzymechemistryFruitMalusThiolTyrosinaseCatechol OxidaseFood Science

description

[EN] Darkening processed fruits and vegetables is caused mainly by enzymatic browning through polyphenol oxidase (PPO) action. Accordingly, we explored the potential of four silica-based materials (MCM-41 nanometric size, MCM-41 micrometric size, UVM-7 and aerosil), non-functionalised and functionalised with thiol groups, to inhibit PPO activity in the model system and apple juice. All materials showed relevant performance when immobilising and inhibiting PPO in model systems, and support topology is a main factor for enzyme immobilisation and inhibition. Thiol-containing silica UVM7-SH showed the greatest inactivation, and similar browning values to those obtained by acidification. The enzyme's kinetic parameters in the presence of UVM-7-SH suggested non-competitive inhibition, which indicated that the material interacted with the enzyme, but beyond the active centre. In real systems, UVM-7-SH completely inhibited enzymatic browning in apple juice (cv. Granny Smith and cv. Golden Delicious) up to 9 days after 5 min of contact.

10.1016/j.foodchem.2017.08.059https://doi.org/10.1016/j.foodchem.2017.08.059