6533b7d6fe1ef96bd1267222

RESEARCH PRODUCT

Adiabatic eigenflows in a vertical porous channel

L. StoreslettenAntonio Barletta

subject

PhysicsMechanical EngineeringIsothermal flowBoundary (topology)Bénard convectionMechanicsCondensed Matter PhysicsPhysics::Fluid DynamicsMechanics of MaterialsCombined forced and natural convectionconvection in porous mediaAdiabatic processbuoyancy-driven instabilityStationary stateCommunication channelRayleigh–Bénard convectionConvection cell

description

AbstractThe existence of an infinite class of buoyant flows in a vertical porous channel with adiabatic and impermeable boundary walls, called adiabatic eigenflows, is discussed. A uniform heat source within the saturated medium is assumed, so that a stationary state is possible with a net vertical through-flow convecting away the excess heat. The simple isothermal flow with uniform velocity profile is a special adiabatic eigenflow if the power supplied by the heat source is zero. The linear stability analysis of the adiabatic eigenflows is carried out analytically. It is shown that these basic flows are unstable. The only exception, when the power supplied by the heat source is zero, is the uniform isothermal flow, which is stable. The existence of adiabatic eigenflows and their stability analysis is extended to the case of spanwise lateral confinement, viz. in the case of a vertical rectangular channel. A generalisation of this study to a vertical channel with an arbitrary cross-sectional shape is also presented.

10.1017/jfm.2014.260http://hdl.handle.net/11585/380644