6533b7d6fe1ef96bd1267265

RESEARCH PRODUCT

Thermomechanical properties and thermal degradation kinetics of poly(methyl methacrylate) (PMMA) and polycarbonate (PC) filled with cerium-doped yttrium aluminium garnet (Ce:YAG) prepared by melt compounding

M. A. SibekoMaria Luisa SaladinoAdriaan S. Luyt

subject

Materials sciencePoly(methyl methacrylate)Polymers and Plasticschemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesThermomechanical propertieschemistry.chemical_compoundThermal degradation kineticYttrium aluminium garnetMaterials ChemistryThermal stabilityPolycarbonateComposite materialMethyl methacrylatePoly(methyl methacrylate); Polycarbonate; Thermal degradation kinetics; Thermomechanical properties; Yttrium aluminium garnet doped with cerium;DopingGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsPoly(methyl methacrylate)0104 chemical sciencesCeriumchemistryPolycarbonateCompoundingvisual_artvisual_art.visual_art_mediumThermomechanical propertie0210 nano-technologyYttrium aluminium garnet doped with cerium

description

This paper reports on the thermomechanical properties and thermal degradation kinetics of poly(methyl methacrylate) (PMMA) and polycarbonate (PC) composites filled with cerium-doped yttrium aluminium garnet (Ce:YAG) at different contents ranging between 0.1 and 5 wt%, and prepared by melt compounding. The interaction between PMMA and the filler was much stronger than that between PC and the filler, and this resulted in a significant improvement in the dynamic mechanical properties of the PMMA composites. The presence of filler did not significantly increase the thermal stability of the PC, while an observable increase in the thermal stability was only observed at higher filler loadings for the PMMA composites. This was attributed to the stronger interaction between Ce:YAG and PMMA and/or its degradation volatiles.

10.1007/s00289-016-1870-5http://hdl.handle.net/10447/234717