0000000000125779

AUTHOR

Adriaan S. Luyt

showing 14 related works from this author

The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of PMMA

2012

Abstract Silica–PMMA nanocomposites with different silica quantities were prepared by a melt compounding method. The effect of silica amount, in the range 1–5 wt.%, on the morphology, mechanical properties and thermal degradation kinetics of PMMA was investigated by means of transmission electron microscopy (TEM), X-ray diffractometry (XRD), dynamic mechanical analysis (DMA), thermogravimetric analyses (TGA), Fourier-transform infrared spectroscopy (FTIR), 13 C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy ( 13 C{ 1 H} CP-MAS NMR) and measures of proton spin-lattice relaxation time in the rotating frame ( T 1 ρ ( H )), in the laboratory frame ( T 1 ( H )) a…

chemistry.chemical_classificationThermogravimetric analysisNanocompositeMaterials sciencePolymers and PlasticsPMMA Silica 13C{1H} CP-MAS NMR Degradation kineticsInfrared spectroscopyNuclear magnetic resonance spectroscopyDynamic mechanical analysisPolymerCondensed Matter PhysicsAmorphous solidChemical engineeringchemistryMechanics of MaterialsMaterials ChemistryFourier transform infrared spectroscopyComposite materialSettore CHIM/02 - Chimica Fisica
researchProduct

The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of polycarbonate

2012

Abstract Polycarbonate/silica nanocomposites with different silica quantities were prepared by a melt compounding method. The effect of silica amount, in the range 1–5 wt.%, on the morphology, mechanical properties and thermal degradation kinetics of polycarbonate (PC) was investigated. Clusters of silica nanoparticles were well dispersed in the polycarbonate whose structure remained amorphous. NMR results showed intermolecular interactions involving the carbonyl groups of different polymeric chains which did not affect the intramolecular rotational motions. The presence of the lowest silica content showed a decrease in the storage and loss moduli below the glass transition temperature, pro…

NanocompositeMaterials scienceIntermolecular forceGeneral EngineeringPlasticizerPolymer–matrix composites (PMCs) Nano-composites Mechanical propertiesThermal propertiesrespiratory systemAmorphous solidvisual_artCeramics and Compositesvisual_art.visual_art_mediumThermal stabilityPolycarbonateComposite materialGlass transitionHydrophobic silicaSettore CHIM/02 - Chimica Fisica
researchProduct

Thermomechanical properties and thermal degradation kinetics of poly(methyl methacrylate) (PMMA) and polycarbonate (PC) filled with cerium-doped yttr…

2016

This paper reports on the thermomechanical properties and thermal degradation kinetics of poly(methyl methacrylate) (PMMA) and polycarbonate (PC) composites filled with cerium-doped yttrium aluminium garnet (Ce:YAG) at different contents ranging between 0.1 and 5 wt%, and prepared by melt compounding. The interaction between PMMA and the filler was much stronger than that between PC and the filler, and this resulted in a significant improvement in the dynamic mechanical properties of the PMMA composites. The presence of filler did not significantly increase the thermal stability of the PC, while an observable increase in the thermal stability was only observed at higher filler loadings for …

Materials sciencePoly(methyl methacrylate)Polymers and Plasticschemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesThermomechanical propertieschemistry.chemical_compoundThermal degradation kineticYttrium aluminium garnetMaterials ChemistryThermal stabilityPolycarbonateComposite materialMethyl methacrylatePoly(methyl methacrylate); Polycarbonate; Thermal degradation kinetics; Thermomechanical properties; Yttrium aluminium garnet doped with cerium;DopingGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsPoly(methyl methacrylate)0104 chemical sciencesCeriumchemistryPolycarbonateCompoundingvisual_artvisual_art.visual_art_mediumThermomechanical propertie0210 nano-technologyYttrium aluminium garnet doped with cerium
researchProduct

PMMA-titania nanocomposites: Properties and thermal degradation behavior

2012

Titania nanoparticles were prepared using a solegel method and calcination at 200 and 600 � C in order to obtain anatase and rutile phases, respectively. The obtained powders were used to prepare PMMAe titania nanocomposites by a melt compounding method. The effect of the crystalline phase and the amount of titania, in the range 1e5 wt.%, on the morphology, mechanical properties and thermal degradation kinetics of PMMA was investigated by means of X-ray diffractometry (XRD), transmission electron microscopy (TEM), 13 C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy ( 13 C{ 1 H}CP-MAS NMR), including the measurement of proton spinelattice relaxation time in t…

Thermogravimetric analysisAnataseMaterials sciencePolymers and Plasticslaw.inventionlawnanocompositesPMMA Titania Nanocomposites Interfacial interaction Properties Degradation kineticsMaterials ChemistrytitaniaCalcinationFourier transform infrared spectroscopyComposite materialSettore CHIM/02 - Chimica Fisicachemistry.chemical_classificationNanocompositePolymerDynamic mechanical analysisCondensed Matter PhysicsPMMAAmorphous soliddegradation kineticsChemical engineeringchemistryMechanics of MaterialspropertiesPMMA; titania; nanocomposites; interfacial interaction; properties; degradation kineticsinterfacial interaction
researchProduct

Influence of the modification, induced by zirconia nanoparticles, on the structure and properties of polycarbonate

2013

Melt compounding was used to prepare polycarbonate (PC)–zirconia nanocomposites with different amounts of zirconia. The effect of the zirconia loading, in the range of 1–5 wt.%, on the structure, mechanical properties and thermal degradation kinetics was investigated. The zirconia nanoparticle aggregates were well dispersed in the PC matrix and induced the appearance of a local lamellar order in the polycarbonate as inferred by SAXS findings. This order could be a consequence of the intermolecular interactions between zirconia and the polymer, in particular with the quaternary carbon bonded to the methyl groups and the methyl carbon as inferred from the NMR results. The presence of zirconia…

chemistry.chemical_classificationMaterials scienceNanocompositeNanocompositePolymers and PlasticsOrganic ChemistryGeneral Physics and AstronomyNanoparticlePolymerInterfacial interactionDegradationchemistryPolycarbonatevisual_artMaterials Chemistryvisual_art.visual_art_mediumZirconiaDegradation; Interfacial interaction; Nanocomposites; Polycarbonate; ZirconiaThermal stabilityCubic zirconiaLamellar structurePolycarbonateComposite materialGlass transitionSettore CHIM/02 - Chimica Fisica
researchProduct

Improvement of interaction in and properties of PMMA-MWNT nanocomposites through microwave assisted acid treatment of MWNT

2013

Soluble derivatives of multi-walled carbon nanotubes (MWNT) embedded in a poly(methylmethacrylate) (PMMA) matrix forming thick, homogeneous and transparent nanocomposites, were prepared and characterized. A new photo-assisted method using microwaves, to purify the MWNTs from amorphous carbon and synthesis catalyst clusters, was tested in a sulphonitric mix. This method shortened the processing time compared to other methods. Pristine and functionalized MWNTs were introduced into the MMA, then in situ photo-polymerized. Transmission electron microscopy (TEM) and X-ray diffractometry (XRD), as well as Fourier-transform infrared (FTIR), Raman and nuclear magnetic resonance (NMR) spectroscopy w…

Microwave-assisted purificationThermogravimetric analysisThermal propertiesMaterials sciencePolymers and PlasticsGeneral Physics and AstronomyCarbon nanotubePMMA; Multi-walled carbon nanotubes; Microwave-assisted purification; Nanocomposite structure; Thermal propertieslaw.inventionsymbols.namesakeDifferential scanning calorimetrylawMaterials ChemistryComposite materialFourier transform infrared spectroscopySettore CHIM/02 - Chimica Fisicachemistry.chemical_classificationNanocompositeOrganic Chemistrytechnology industry and agriculturePolymerPMMAMulti-walled carbon nanotubeAmorphous carbonChemical engineeringchemistrysymbolsRaman spectroscopyNanocomposite structureEuropean Polymer Journal
researchProduct

Study of morphology, mechanical properties, and thermal degradation of polycarbonate-titania nanocomposites as function of titania crystalline phase …

2013

Titania nanoparticles were prepared using a sol–gel method and calcination at 2008C and 6008C to obtain anatase and rutile phases, respectively. The obtained powders were used to prepare polycarbonate (PC)-titania nanocomposites by melt compounding. The effect of different crystalline phases and amounts of titania, in the range 1–5 wt%, on the morphology, mechanical properties, and thermal degradation kinetics of PC was investigated. The results show that the filler modified the plasticity or rigidity of the polymer and influenced the degradation kinetics, in different ways depending on the type and amount of titania. POLYM. COMPOS.,

chemistry.chemical_classificationAnataseMaterials scienceNanocompositePolymers and PlasticsGeneral ChemistryPolymerPlasticitylaw.inventionchemistrylawRutileCompoundingvisual_artMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumCalcinationPolycarbonateComposite materialPolymer Composites
researchProduct

Preparation and characterisation of Ce:YAG -polycarbonate composites for white LED

2016

Ce:YAG-polycarbonate composites were prepared with several amounts of Ce:YAG in the range 0.1-5 wt.% by using melt compounding. The structure and morphology of the composites were investigated by means of X-ray diffractometry and transmission electron microscopy. The optical properties of the composites were studied by using photoluminescence spectroscopy. The intermolecular interaction between the polymer and the filler surface was investigated using 13C cross-polarization magic-angle spinning NMR spectroscopy (13C {1H} CP-MAS NMR). The results showed that the dispersion of the particles in the polymer, and the optical properties, depend on the Ce:YAG amount. The composites were combined w…

Composite materials Surfaces and interfaces Luminescence NanostructuresLuminescencePhotoluminescenceMaterials sciencegenetic structuresComposite number02 engineering and technology010402 general chemistry01 natural sciencesMaterials ChemistrySurfaces and interfacesPolycarbonateComposite materialSpectroscopySettore CHIM/02 - Chimica Fisicachemistry.chemical_classificationMechanical EngineeringMetals and AlloysComposite materialsPolymer021001 nanoscience & nanotechnologyeye diseasesNanostructures0104 chemical scienceschemistryMechanics of MaterialsTransmission electron microscopyvisual_artvisual_art.visual_art_mediumsense organs0210 nano-technologyDispersion (chemistry)LuminescenceJournal of Alloys and Compounds
researchProduct

Morphology and properties of poly(methyl methacrylate) (PMMA) filled with mesoporous silica (MCM-41) prepared by melt compounding

2016

This paper reports on the morphologies of poly(methyl methacrylate) (PMMA)/mesoporous silica (MCM-41) composites prepared by melt compounding with various MCM-41 contents in the range of 0.1–5 wt%, the interactions between the polymer and filler in these composites, and their thermomechanical, mechanical and thermal degradation properties. The composites formed transparent films at low filler loadings (\0.5 wt%) because of well-dispersed, unagglomerated particles. The presence of polymer did not alter the pore dimensions in the MCM-41 structure and it maintained its hexagonal structure, even though the polymer chains partially penetrated the pores during composite preparation. The PMMA inte…

Materials scienceComposite number02 engineering and technology010402 general chemistry01 natural scienceschemistry.chemical_compoundMCM-41morphologyGeneral Materials ScienceThermal stabilityMechanics of MaterialComposite materialMethyl methacrylateSettore CHIM/02 - Chimica Fisicachemistry.chemical_classificationMechanical EngineeringThermal stabilityPolymerMesoporous silica021001 nanoscience & nanotechnologyPoly(methyl methacrylate)Materials science0104 chemical scienceschemistryMechanics of Materialsvisual_artvisual_art.visual_art_mediumMaterials Science (all)0210 nano-technologyGlass transition
researchProduct

Macro-micro relationship in nanostructured functional composites

2012

This paper examines the results of the characterization of two functional composites: Poly(methyl methacrylate) (PMMA)-Ce:YAG (yttrium aluminium garnet doped with cerium) and PMMA-cobalt hexacyanoferrate (CoHCF). The composites were prepared as possible emitters in the fields of lighting thermal sensors. The prepared composites were char- acterized using transmission electron microscopy (TEM), nuclear magnetic resonance (NMR) spectroscopy, thermogravi- metric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) analyses to study the correlation between micro and macro characteristics. We found that the molecular interactions of the two different fill…

cobalt hexacyanoferrateMaterials sciencePolymers and PlasticsGeneral Chemical EngineeringComposite numberchemistry.chemical_elementlcsh:Chemical technologyNanocompositeschemistry.chemical_compoundDifferential scanning calorimetryYttrium aluminium garnetnanocomposites PMMA yttrium aluminium garnet doped with cerium (Ce:YAG) cobalt hexacyanoferrate (CoHCF) interfacial interactionlcsh:TA401-492Materials ChemistryCeYAGlcsh:TP1-1185Physical and Theoretical ChemistryComposite materialMethyl methacrylateSettore CHIM/02 - Chimica Fisicachemistry.chemical_classificationOrganic ChemistryPolymerDynamic mechanical analysisPMMACeriumchemistryTransmission electron microscopyYAG) cobalt hexacyanoferrate (CoHCF) interfacial interaction [nanocomposites PMMA yttrium aluminium garnet doped with cerium (Ce]lcsh:Materials of engineering and construction. Mechanics of materialsinterfacial interactionExpress Polymer Letters
researchProduct

Influence of the Ce: YAG amount on structure and optical properties of Ce:YAG-PMMA composites for white LED

2016

Ce:YAG-poly(methyl methacrylate) (PMMA) composites were prepared by using a melt compounding method, adding several amounts of Ce:YAG in the range 0.1–5wt.%. The optical properties of the obtained composites and of the composites combined with a blue LED were measured to investigate the effect of the amount of Ce:YAG on the resulting emitted light in view of possible application in white LED manufacture. An increase in Ce:YAG amount caused an increase in the emission and a shift of 15 nm, influencing the white LED performance. The structure and morphology of the composites were studied. The results show that the interaction between the two components, observed by using solid state NMR exper…

Materials sciencegenetic structuresbusiness.industryWhite LEDPolymeric Composites02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPMMA01 natural sciencesInterface InteractionsYAG [Ce]eye diseases0104 chemical sciencesOptoelectronicsComposite materialPhysical and Theoretical Chemistry0210 nano-technologybusiness
researchProduct

Morphology, mechanical properties and thermal degradation kinetics of PMMA-zirconia nanocomposites prepared by melt compounding

2012

Zirconia nanoparticles were synthesized by means of a sol-gel method and embedded in poly(methyl methacrylate) (PMMA) by melt compounding. The zirconia was well dispersed in the PMMA matrix, with only a few clusters, especially for the highest investigated zirconia content. NMR results showed heteronuclear dipolar interactions involving the carbons and the surrounding hydrogen nuclei. The effect of the amount of zirconia, in the range of 1–5!wt%, on the thermomechanical properties and thermal degradation kinetics of PMMA was also investigated by means of dynamic mechanical analysis (DMA), thermogravimetric analyses (TGA), and Fourier-transform infrared spectroscopy (FTIR). The presenc…

MorphologyThermogravimetric analysisMaterials sciencePolymers and PlasticsGeneral Chemical EngineeringNanoparticleInfrared spectroscopylcsh:Chemical technologyNanocompositeslcsh:TA401-492Materials Chemistrylcsh:TP1-1185Cubic zirconiaThermal stabilityPhysical and Theoretical ChemistryFourier transform infrared spectroscopyComposite materialSettore CHIM/02 - Chimica FisicaNanocompositeOrganic ChemistryDynamic mechanical analysisPMMAnanocomposites PMMA zirconia morphology dynamic mechanical analysis thermal degradationThermal degradationZirconialcsh:Materials of engineering and construction. Mechanics of materialsExpress Polymer Letters
researchProduct

Corrigendum to “The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of PMMA” [Polym Degrad S…

2012

Silica nanoparticlesMaterials scienceMorphology (linguistics)Polymers and PlasticsChemical engineeringDegradation kineticsMechanics of MaterialsThermalMaterials ChemistryNanotechnologyCondensed Matter PhysicsStabPolymer Degradation and Stability
researchProduct

Morphology, interfacial interaction, and thermal degradation of polycarbonate/MCM-41 (nano)composites

2017

ABSTRACTThis article reports on the morphology, interfacial interaction, thermal stability, and thermal degradation kinetics of polycarbonate (PC)/mesoporous silica (MCM-41) composites with various MCM-41 contents, prepared by melt compounding. The composites with low filler loadings (<0.3 wt%) maintained their transparency because of the well dispersed MCM-41 particles, but at higher filler loadings the composites lost their transparency due to the presence of agglomerates. The presence of agglomerates decreased the thermal stability of PC due to the reduced effectiveness of the particles to immobilize the polymer chains, free radicals, and volatile degradation products.

Mesoporous silica; nanocomposites; polycarbonate; structure–property relationship; thermal degradation; Analytical Chemistry; Chemical Engineering (all); Polymers and PlasticsMaterials sciencePolymers and PlasticsGeneral Chemical Engineering02 engineering and technologystructure–property relationship010402 general chemistry01 natural sciencesAnalytical ChemistryMCM-41nanocompositesChemical Engineering (all)Thermal stabilitythermal degradationPolycarbonateComposite materialchemistry.chemical_classificationNanocompositenanocompositePolymerMesoporous silica021001 nanoscience & nanotechnology0104 chemical sciencespolycarbonatechemistryAgglomerateCompoundingvisual_artvisual_art.visual_art_medium0210 nano-technologyMesoporous silicaInternational Journal of Polymer Analysis and Characterization
researchProduct