6533b7d7fe1ef96bd1267844
RESEARCH PRODUCT
Application of kolmogorov complexity to inductive inference with limited memory
Andris Ambainissubject
Discrete mathematicsHardware_MEMORYSTRUCTURESKolmogorov complexityLogarithmSublinear functionKolmogorov structure functionChain rule for Kolmogorov complexityOpen problemInductive probabilityInductive reasoningMathematicsdescription
A b s t r a c t . We consider inductive inference with limited memory[l]. We show that there exists a set U of total recursive functions such that U can be learned with linear long-term memory (and no short-term memory); U can be learned with logarithmic long-term memory (and some amount of short-term memory); if U is learned with sublinear long-term memory, then the short-term memory exceeds arbitrary recursive function. Thus an open problem posed by Freivalds, Kinber and Smith[l] is solved. To prove our result, we use Kolmogorov complexity.
year | journal | country | edition | language |
---|---|---|---|---|
1995-01-01 |