6533b7d7fe1ef96bd1267912
RESEARCH PRODUCT
Codimension growth of central polynomials of Lie algebras
Mikhail ZaicevAntonio Giambrunosubject
010101 applied mathematicsPure mathematicsExponential growthApplied MathematicsGeneral MathematicsComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION010102 general mathematicsLie algebraCodimension0101 mathematics01 natural sciencesMathematicsdescription
Abstract Let L be a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic zero and let I be the T-ideal of polynomial identities of the adjoint representation of L. We prove that the number of multilinear central polynomials in n variables, linearly independent modulo I, grows exponentially like ( dim L ) n {(\dim L)^{n}} .
year | journal | country | edition | language |
---|---|---|---|---|
2019-10-01 | Forum Mathematicum |