6533b7d7fe1ef96bd1267a78

RESEARCH PRODUCT

Dimensionality of the Superconductivity in the Transition Metal Pnictide WP

Angela NigroGiuseppe CuonoPasquale MarraAntonio LeoGaia GrimaldiZiyi LiuZhenyu MiWei WuGuangtong LiuCarmine AutieriJianlin LuoCanio Noce

subject

TechnologyFOS: Physical sciencesDFTSuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated ElectronsSuperconducting fluctuationsCondensed Matter::SuperconductivityPnictidesGeneral Materials ScienceMicroscopyQC120-168.85Strongly Correlated Electrons (cond-mat.str-el)MagnetoresistanceCondensed Matter - SuperconductivityTQH201-278.5Nonsymmorphic symmetriesWPTransition metalEngineering (General). Civil engineering (General)TK1-9971Descriptive and experimental mechanicstransition metal; pnictides; WP; pnictide superconductors; superconducting fluctuations; magnetoresistance; DFT; nonsymmorphic symmetriesDFT; Magnetoresistance; Nonsymmorphic symmetries; Pnictide superconductors; Pnictides; Superconducting fluctuations; Transition metal; WPPnictide superconductorsElectrical engineering. Electronics. Nuclear engineeringTA1-2040

description

We report theoretical and experimental results on the transition metal pnictide WP. The theoretical outcomes based on tight-binding calculations and density functional theory indicate that WP is a three-dimensional superconductor with an anisotropic electronic structure and nonsymmorphic symmetries. On the other hand, magnetoresistance experimental data and the analysis of superconducting fluctuations of the conductivity in external magnetic field indicate a weakly anisotropic three-dimensional superconducting phase.

10.3390/ma15031027http://hdl.handle.net/11386/4777362