Dimensionality of the Superconductivity in the Transition Metal Pnictide WP
We report theoretical and experimental results on the transition metal pnictide WP. The theoretical outcomes based on tight-binding calculations and density functional theory indicate that WP is a three-dimensional superconductor with an anisotropic electronic structure and nonsymmorphic symmetries. On the other hand, magnetoresistance experimental data and the analysis of superconducting fluctuations of the conductivity in external magnetic field indicate a weakly anisotropic three-dimensional superconducting phase.
Superconductivity induced by structural reorganization in the electron-doped cuprate Nd$_{2-x}$Ce$_x$CuO$_4$
Electron-doped and hole-doped superconducting cuprates exhibit a symmetric phase diagram as a function of doping. This symmetry is however only approximate. Indeed, electron-doped cuprates become superconductors only after a specific annealing process: This annealing affects the oxygen content by only a tiny amount, but has a dramatic impact on the electronic properties of the sample. Here we report the occurrence of superconductivity in oxygen-deficient Nd$_{2-x}$Ce$_x$CuO$_4$ thin films grown in an oxygen-free environment, after annealing in pure argon flow. As verified by x-ray diffraction, annealing induces an increase of the interlayer distance between CuO$_2$ planes in the crystal str…
Progress towards innovative and energy efficient logic circuits
Abstract The integration of superconductive nanowire logic memories and energy efficient computing Josephson logic is explored. Nanowire memories are based on the integration of switchable superconducting nanowires with a suitable magnetic material. These memories exploit the electro-thermal operation of the nanowires to efficiently store and read a magnetic state. In order to achieve proper memory operation a careful design of the nanowire assembly is necessary, as well as a proper choice of the magnetic material to be employed. At present several new superconducting logic families have been proposed, all tending to minimize the effect of losses in the digital Josephson circuits replacing …
Competition between intrinsic and extrinsic effects in the quenching of the superconducting state in FeSeTe thin films
We report the first experimental observation of the quenching of the superconducting state in current-voltage characteristics of an iron-based superconductor, namely, in FeSeTe thin films. Based on available theoretical models, our analysis suggests the presence of an intrinsic flux-flow electronic instability along with non-negligible extrinsic thermal effects. The coexistence and competition of these two mechanisms classify the observed instability as halfway between those of low-temperature and of high-temperature superconductors, where thermal effects are respectively largely negligible or predominant.