6533b7d7fe1ef96bd1267c09

RESEARCH PRODUCT

Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth

Janne K. ValkonenJohanna MappesJohanna MappesSwanne P. GordonSwanne P. GordonOssi NokelainenEmily Burdfield-steelEmily Burdfield-steelKatja RönkäKatja RönkäBibiana Rojas

subject

0106 biological sciencespredatorspredator-prey interactionsFrequency-dependent selectionFREQUENCY-DEPENDENT SELECTIONDIVERSITYMoths01 natural sciencesMüllerian mimicrytäpläsiilikäsPredationmuuntelu (biologia)Arctia plantaginisPredatorFinland0303 health sciencesMonomorphismsaaliseläimetluonnonvalintaEcologywood tiger mothVARIABLE SELECTIONDIFFERENTIATIONPOISON FROG1181 Ecology evolutionary biologyMULLERIAN MIMICRYvaroitusväriColorZoologyAposematismBiology010603 evolutionary biologyBirds03 medical and health sciencesArctia plantaginisAposematismPARASEMIAcolour polymorphismpetoeläimetAnimalsaposematismfrequency‐dependent selectionEcology Evolution Behavior and SystematicsSelection (genetic algorithm)030304 developmental biologysignal variationsignal convergence010604 marine biology & hydrobiologypredator–prey interactionsEVOLUTIONSIGNALScotlandCommunity compositionPredatory Behavior

description

AbstractWarning signals are predicted to develop signal monomorphism via positive frequency-dependent selection (+FDS) albeit many aposematic systems exhibit signal polymorphism. To understand this mismatch, we conducted a large-scale predation experiment in four locations, among which the frequencies of hindwing warning coloration of aposematic Arctia plantaginis differ. Here we show that selection by avian predators on warning colour is predicted by local morph frequency and predator community composition. We found +FDS to be strongest in monomorphic Scotland, and in contrast, lowest in polymorphic Finland, where different predators favour different male morphs. +FDS was also found in Georgia, where the predator community was the least diverse, whereas in the most diverse avian community in Estonia, hardly any models were attacked. Our results support the idea that spatial variation in predator and prey communities alters the strength or direction of selection on warning signals, thus facilitating a geographic mosaic of selection.

10.1111/ele.13597http://hdl.handle.net/10138/321482